Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Electrode Preparation Procedure
2.3. Apparatus and Procedures
2.4. Sample Preparation
3. Results and Discussion
3.1. Determination of CA at SNGC-CB Electrodes
3.2. Real Samples Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Andrés-Lacueva, C. Polyphenols and Health: Current State and Progress. J. Agric. Food Chem. 2012, 60, 8773–8775. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- David, I.G.; Bizgan, A.-M.C.; Popa, D.E.; Buleandra, M.; Moldovan, Z.; Badea, I.A.; Tekiner, T.A.; Basaga, H.; Ciucu, A.A. Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode. Food Chem. 2015, 173, 1059–1065. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Vajić, U.-J.V.; Mijin, D.Z.; Zdunić, G.M.; Šavikin, K.P.; Branković, S.; Kitić, D.; Bugarski, B.M. Polyphenol extraction in microwave reactor using by-product of Thymus serpyllum L. and biological potential of the extract. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100417. [Google Scholar] [CrossRef]
- Oliva, E.; Fanti, F.; Palmieri, S.; Viteritti, E.; Eugelio, F.; Pepe, A.; Compagnone, D.; Sergi, M. Predictive Multi Experiment Approach for the Determination of Conjugated Phenolic Compounds in Vegetal Matrices by Means of LC-MS/MS. Molecules 2022, 27, 3089. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Rodríguez-Pulido, F.J.; Toci, A.T.; García-Estevez, I. Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy. Food Rev. Int. 2022, 38, 884–912. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal. Chim. Acta 2005, 539, 237–244. [Google Scholar] [CrossRef]
- Blasco, A.J.; González, M.C.; Escarpa, A. Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: Towards an electrochemical index of natural antioxidants. Anal. Chim. Acta 2004, 511, 71–81. [Google Scholar] [CrossRef]
- Ruiz-Caro, P.; Espada-Bellido, E.; García-Guzmán, J.J.; Bellido-Milla, D.; Vázquez-González, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. Food Chem. 2022, 393, 133417. [Google Scholar] [CrossRef]
- Seeber, R.; Pigani, L.; Terzi, F.; Zanardi, C. Amperometric sensing. A melting pot for material, electrochemical, and analytical sciences. Electrochim. Acta 2015, 179, 350–363. [Google Scholar] [CrossRef]
- Gorjanović, S.; Komes, D.; Laličić-Petronijević, J.; Pastor, F.T.; Belščak-Cvitanović, A.; Veljović, M.; Pezo, L.; Sužnjević, D. Antioxidant efficiency of polyphenols from coffee and coffee substitutes-electrochemical versus spectrophotometric approach. J. Food Sci. Technol. 2017, 54, 2324–2331. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; López-Iglesias, D.; Cubillana-Aguilera, L.; Bellido-Milla, D.; Palacios-Santander, J.M.; Marin, M.; Grigorescu, S.D.; Lete, C.; Lupu, S. Silver nanostructures—Poly(3,4-ethylenedioxythiophene) sensing material prepared by sinusoidal voltage procedure for detection of antioxidants. Electrochim. Acta 2021, 393, 139082. [Google Scholar] [CrossRef]
- Munteanu, I.-G.; Apetrei, C. Electrochemical Determination of Chlorogenic Acid in Nutraceuticals Using Voltammetric Sensors Based on Screen-Printed Carbon Electrode Modified with Graphene and Gold Nanoparticles. Int. J. Mol. Sci. 2021, 22, 8897. [Google Scholar] [CrossRef]
- Sekar, S.; Huijun, J.; Liuzhu, Z.; Jin, C.; Lee, S.; Kim, D.Y.; Manikandan, R. Copper phthalocyanine conjugated graphitic carbon nitride nanosheets as an efficient electrocatalyst for simultaneous detection of natural antioxidants. Electrochim. Acta 2022, 413, 140150. [Google Scholar] [CrossRef]
- Gao, F.; Ma, X.; Zeng, Q.; Gao, Y.-S.; Qian, Y.; Wang, X.-Q.; Yu, Y.-F.; Lu, L.-M. Graphene aerogel decorated with MoS2 sheets: An efficient electrochemical sensing platform for caffeic acid in red wine sample. Chin. J. Anal. Chem. 2021, 49, 55–61. [Google Scholar] [CrossRef]
- Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Rocha, M.L.; de Souza Gil, E. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem. 2016, 190, 506–512. [Google Scholar] [CrossRef]
- Pigani, L.; Rioli, C.; López-Iglesias, D.; Zanardi, C.; Zanfrognini, B.; Cubillana-Aguilera, L.; Palacios-Santander, J. Preparation and characterization of reusable Sonogel-Carbon electrodes containing carbon black: Application as amperometric sensors for determination of cathecol. J. Electroanal. Chem. 2020, 877, 114653. [Google Scholar] [CrossRef]
- Talarico, D.; Arduini, F.; Constantino, A.; Del Carlo, M.; Compagnone, D.; Moscone, D.; Palleschi, G. Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochem. Commun. 2015, 60, 78–82. [Google Scholar] [CrossRef]
- López-Iglesias, D.; García-Guzmán, J.J.; Bellido-Milla, D.; Naranjo-Rodríguez, I.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. The Sonogel-Carbon-PEDOT Material: An Innovative Bulk Material for Sensor Devices. J. Electrochem. Soc. 2018, 165, B906–B915. [Google Scholar] [CrossRef]
- López-Iglesias, D.; Fanelli, F.; Marchi, L.; Alcántara, R.; Cocchi, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M.; García-Guzmán, J.J. Ceramic polyaniline-carbon composite obtained by ultrasound-assisted sol–gel route: Electrochemical performance towards environmental pollutants. J. Electroanal. Chem. 2022, 905, 115971. [Google Scholar] [CrossRef]
- Manchón, N.; Mateo-Vivaracho, L.; D’arrigo, M.; García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A. Distribution patterns of polyphenols and alkaloids in instant coffee, soft and energy drinks, and tea. Czech J. Food Sci. 2013, 31, 483–500. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Jin, C.; Zhang, X.; Li, J.; Wang, F.; Zhang, Y. Determination of caffeic acid using a glassy carbon electrode modified with porous carbon material obtained from Tetrapanax papyriferus. Ionics 2022, 28, 1441–1450. [Google Scholar] [CrossRef]
- Della Pelle, F.; Rojas, D.; Silveri, F.; Ferraro, G.; Fratini, E.; Scroccarello, A.; Escarpa, A.; Compagnone, D. Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS2/catechin-capped AuNPs/carbon black–based nanocomposite sensor. Mikrochim. Acta 2020, 187, 296. [Google Scholar] [CrossRef]
- Tomac, I. Electrochemical Properties of Chlorogenic Acids and Determination of Their Content in Coffee Using Differential Pulse Voltammetry. Int. J. Electrochem. Sci. 2016, 11, 2854–2876. [Google Scholar] [CrossRef]
- De Araújo, T.A.; Cardoso, J.C.; Barbosa, A.M.J.; Ferreira, V.S. Influence of the surfactant bromide of cetyltrimetyl ammonium in the determination of chlorogenic acid in instant coffee and mate tea samples. Colloids Surfaces B Biointerfaces 2009, 73, 408–414. [Google Scholar] [CrossRef]
- Farah, A.; de Paulis, T.; Moreira, D.P.; Trugo, L.C.; Martin, P.R. Chlorogenic Acids and Lactones in Regular and Water-Decaffeinated Arabica Coffees. J. Agric. Food Chem. 2006, 54, 374–381. [Google Scholar] [CrossRef]
Sensor Type 1 | Linear Range (μM) | LOD (μM) | Refs. |
---|---|---|---|
Ag-PEDOT/GCE | 2–100 | 1.9 | [16] |
PCMTP/GCE | 0.01–10 | 0.00534 | [27] |
SPE-CB | 1–50 | 0.8 | [22] |
PGE | 0.10–3000 | 0.0883 | [6] |
MoS2/GA/GCE | 0.001–10.0 | 0.3 | [19] |
WS2/catechin-capped AuNPs/CB | 0.3–112.0 | 0.10 | [28] |
SNGC | 1–50 | 1.8 | This work |
SNGC-CB | 1–50 | 0.76 | This work |
Coffee | CA/Coffee (mg/g) (External Calibration) | CA/Coffee (mg/g) (Standard Addition) | R% |
---|---|---|---|
#1 | 23.2 ± 0.5 | 23.4 ± 0.1 | 99.0 |
#2 | 24.2 ± 1.3 | 23.6 ± 1.5 | 102.7 |
#3 | 24.4 ± 0.4 | 24.2 ± 1.7 | 100.8 |
#4 | 35.4 ± 1.2 | 33.14 ± 1.7 | 107.5 |
Coffee | DPV (External Calibration) CA/Coffee (mg/g) | HPLC CA/Coffee (mg/g) | Folin–Ciocalteu TPC as CA/Coffee (mg/g) |
---|---|---|---|
#1 | 23.2 | 0.21 | 161 |
#2 | 24.2 | 0.21 | 160 |
#3 | 24.4 | 0.23 | 166 |
#4 | 35.4 | 0.26 | 158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pigani, L.; Rioli, C.; Zanfrognini, B.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Cubillana-Aguilera, L.M. Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors 2022, 22, 8448. https://doi.org/10.3390/s22218448
Pigani L, Rioli C, Zanfrognini B, García-Guzmán JJ, Palacios-Santander JM, Cubillana-Aguilera LM. Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors. 2022; 22(21):8448. https://doi.org/10.3390/s22218448
Chicago/Turabian StylePigani, Laura, Cristina Rioli, Barbara Zanfrognini, Juan José García-Guzmán, José Maria Palacios-Santander, and Laura María Cubillana-Aguilera. 2022. "Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes" Sensors 22, no. 21: 8448. https://doi.org/10.3390/s22218448
APA StylePigani, L., Rioli, C., Zanfrognini, B., García-Guzmán, J. J., Palacios-Santander, J. M., & Cubillana-Aguilera, L. M. (2022). Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors, 22(21), 8448. https://doi.org/10.3390/s22218448