Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application
Abstract
:1. Introduction
2. Theoretical Background
2.1. Choosing of Sorbents for Polycomposite Coatings
- One selective + universal sorbents: 18-crown-6/TX-100, 18-crown-6/PEG-2000, 18-crown-6/PEGA;
- Universal sorbent with greater sensitivity to amines + universal sorbent with greater sensitivity to acids: TX-100/PEGA;
- Universal with greater sensitivity to acids + selective to amines: PEGA/PDEGS;
- Universal with greater sensitivity to amines + selective to acids: TX-100/TW;
- Selective to amines + selective to acids: 18-crown-6/PDEGS;
- Two universal sorbents: PEG-2000/TX-100.
2.2. Choice of the Geometry of the Thin Film Deposition Area and Its Mass
- The mass of the coating on both sides should be the same or close within the limits of the deposition error (0.1–0.5 µg).
- The mass of films on separate zones should be the same on each electrode.
- The total weight of all coatings on both sides must not exceed 20 µg.
2.3. Algorithm for Processing the Output Data of Polycomposite Coatings
- According to the signals of the sensor with one polycomposite coating (1/2), as the ratio of its response to 5 s of sorption (∆F(1/2)5) to the response to 60 s of sorption (∆F(1/2)60):
- As the ratio of sensor signals with different polycomposite coatings at certain moments of sorption τ,s according to the formula:Aij∑ = (∆F(1/2),τ1/∆F(3/4),τ2): (∆F(5/6),τ3/∆F(7/8),τ4),
3. Materials and Methods
3.1. Sorbents for Polycomposite Coatings
3.2. Volatile Organic Compounds
3.3. Instrument and Measuring Mode
3.4. Sensor Output and Processing
3.5. The Method of Formation of Polycomposite Coatings and Masses of Sorbents in Them
3.6. Prediction of the Sorption Properties of a Polycomposite Coating
3.7. Analysis of Real Objects and Model Gas Mixtures
- Minimum system noise during measurement;
- Operating stability;
- High sensitivity to volatile disease markers;
- Possibility of identification of compounds in gas mixtures.
3.8. Collection and Analysis of Biological Samples
3.9. Ethics Statement
4. Results
4.1. The Choice of the Method of Formation a Polycomposite Coating and the Mass of Sorbents in Them
4.2. Evaluation of the Efficiency of VOC Vapor Sorption by a Sensor with a Polycomposite Coating and a Matrix of Relevant Sensors
4.3. Kinetic Features of Microbalance of VOC Vapors by a Sensor with a Polycomposite Coating and an Array of Relevant Sensors
4.4. Calculation of Sorption Efficiency Parameters from the Responses of Sensors with Polycomposite Coatings
4.5. Analysis of Calf-Exhaled Breath Condensate Samples
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Substance | Index | Individual Coatings | Polycomposite Coating (1/2/3) | |||||
18-crown-6 | PEGA | PDEGS | 18-crown-6/ PEGA | PEGA/PDEGS | 18-crown-6/ PDEGS | 18-crown-6/ PEGA/PDEGS | ||
Ethanoic acid | ∆Fmax ± Δ | 11 ± 1 | 8 ± 1 | 15 ± 2 | 13 ± 2 | 22 ± 2 | 14 ± 2 | 25 ± 3 |
Smol | 1137 | 827 | 1551 | 1344 | 2275 | 1448 | 2586 | |
Butanoic acid | ∆Fmax ± Δ | 9 ± 1 | 8 ± 1 | 12 ± 2 | 10 ± 1 | 20 ± 2 | 15 ± 2 | 17 ± 2 |
Smol | 447 | 397 | 596 | 497 | 994 | 745 | 844 | |
3-methylbutanoic acid | ∆Fmax ± Δ | 7 ± 1 | 5 ± 1 | 8 ± 1 | 13 ± 2 | 25 ± 3 | 15 ± 2 | 13 ± 2 |
Smol | 649 | 463 | 742 | 1205 | 2317 | 1390 | 1205 | |
Diethylamine | ∆Fmax ± Δ | 24 ± 3 | 13 ± 2 | 32 ± 3 | 22 ± 2 | 46 ± 4 | 24 ± 3 | 44 ± 4 |
Smol | 205 | 111 | 273 | 188 | 393 | 205 | 376 | |
Ethanol | ∆Fmax ± Δ | 11 ± 1 | 16 ± 2 | 23 ± 3 | 30 ± 3 | 35 ± 3 | 19 ± 2 | 37 ± 3 |
Smol | 45 | 65 | 94 | 123 | 143 | 78 | 151 | |
Water | ∆Fmax ± Δ | 6 ± 1 | 6 ± 1 | 11 ± 2 | 12 ± 2 | 15 ± 2 | 6 ± 1 | 11 ± 1 |
Smol | 40 | 40 | 73 | 80 | 100 | 40 | 73 |
References
- Farraia, M.V.; Rufo, J.C.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed. J. 2019, 4, e42. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.A.D. Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosens. Dis. Diagn. 2016, 5, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, Y.; Choi, S. Applications and Technology of Electronic Nose for Clinical Diagnosis. Open J. Appl. Biosens. 2013, 2, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D. Applications of Electronic-Nose Technologies for Noninvasive Early Detection of Plant, Animal and Human Diseases. Chemosensors 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Thaler, E.R.; Hanson, C.W. Medical applications of electronic nose technology. Expert Rev. Med. Devices 2005, 2, 559–566. [Google Scholar] [CrossRef]
- Wilson, A.D. Noninvasive Early Disease Diagnosis by Electronic-Nose and Related VOC-Detection Devices. Biosensors 2020, 10, 73. [Google Scholar] [CrossRef]
- Shuba, A.; Kuchmenko, T.; Umarkhanov, R.; Chernitskiy, A. Portable E-nose for Diagnostic of Inflammation and Diverse Variation in Health Status of Humans and Animals. In Proceedings of the Fifth International Conference on Advances in Sensors, Actuators, Metering and Sensing (ALLSENSORS 2020), Valencia, Spain, 21–25 November 2020. [Google Scholar]
- Snitz, K.; Andelman-Gur, M.; Pinchover, L.; Weissgross, R.; Weissbrod, A.; Mishor, E.; Zoller, R.; Linetsky, V.; Medhanie, A.; Shushan, S.; et al. Proof of concept for real-time detection of SARS-CoV-2 infection with an electronic nose. PLoS ONE 2021, 16, e0252121. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Kim, T.; Losic, D.; Tung, T.T. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 2016, 110, 97–129. [Google Scholar] [CrossRef]
- Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef]
- Tricoli, A.; Neri, G. Miniaturized Bio-and Chemical-Sensors for Point-of-Care Monitoring of Chronic Kidney Diseases. Sensors 2018, 18, 942. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, D.; Zhang, Q.; Chen, X.; Xu, G.; Lu, Y.; Liu, Q. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens. Bioelectron. 2017, 93, 94–101. [Google Scholar] [CrossRef]
- Lou, C.; Lei, G.; Liu, X.; Xie, J.; Li, Z.; Zheng, W.; Goel, N.; Kumar, M.; Zhang, J. Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord. Chem. Rev. 2021, 452, 214280. [Google Scholar] [CrossRef]
- Miah, M.R.; Yang, M.; Khandaker, S.; Bashar, M.M.; Alsukaibi, A.K.D.; Hassan, H.M.; Znad, H.; Awual, R. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sens. Actuators A Phys. 2022, 347, 113933. [Google Scholar] [CrossRef]
- Kuchmenko, T. Chemical sensors based on piezoelectric quartz microbalances. In Chemical Sensors, 1st ed.; Vlasov, Y.G., Ed.; Nauka: Moscow, Russia, 2011; Volume 14, pp. 120–195. ISBN 978-5-02-037511-6. Available online: https://www.rfbr.ru/rffi/ru/books/o_1779597#1 (accessed on 1 October 2022).
- Xue, S.; Cao, S.; Huang, Z.; Yang, D.; Zhang, G. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. Materials 2021, 14, 4263. [Google Scholar] [CrossRef]
- Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Devkota, J.; Ohodnicki, P.R.; Greve, D.W. SAW Sensors for Chemical Vapors and Gases. Sensors 2017, 17, 801. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cang, H.; Li, C.; Zhao, Z.K.; Li, H. Quartz crystal microbalance sensor array for the detection of volatile organic compounds. Talanta 2009, 78, 711–716. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1955, 155, 206–222. [Google Scholar] [CrossRef]
- Shuba, A.A.; Kuchmenko, T.A.; Samoilova, E.I.; Bel’skikh, N.V. Selection of a piezoelectric sensor array for detecting volatile organic substances in water. Mosc. Univ. Chem. Bull. 2016, 71, 68–75. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Umarkhanov, R.U. Peculiarities of microweighing of trace quantities of alkylamines on polymer and solid-state thin films. J. Anal. Chem. 2013, 68, 368–375. [Google Scholar] [CrossRef]
- Benes, E. Improved quartz crystal microbalance technique. J. Appl. Phys. 1984, 56, 608–626. [Google Scholar] [CrossRef]
- Lu, C. Theory and Practice of the Quartz Crystal Microbalance. In Applications of Piezoelectric Quartz Crystal Microbalances, 1st ed.; Lu, C., Czanderna, A.W., Eds.; Elsevier: North Holland, The Netherlands, 1984; Volume 7, pp. 19–61. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Shuba, A.A.; Belskikh, N.V. The identification parameters of organic substances in multisensors piezoquartz microbalance. Anal. Kontrol 2012, 16, 151–161. [Google Scholar]
- Kholin, Y.V.; Nikitina, N.A.; Panteleimonov, A.V.; Reshetnyak, E.A.; Bugaevsky, A.A.; Loginova, L.P. Metrological Characteristics of Detection Methods with a Binary Response; Timchenko: Kharkov, Ukraine, 2008; 128p. [Google Scholar]
- Thomson, G.W. The Antoine Equation for Vapor-pressure Data. Chem. Rev. 1946, 38, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Gómez, J.K.; Acevedo, C.M.D.; García-Rico, R.O. Detection of the bacteria concentration level in pasteurized milk by using two different artificial multisensory methods. Sens. Bio-Sens. Res. 2021, 33, 100428. [Google Scholar] [CrossRef]
- Hill, D.; Binions, R. Breath Analysis for Medical Diagnosis. Int. J. Smart Sens. Intell. Syst. 2012, 5, 401–440. [Google Scholar] [CrossRef] [Green Version]
- Reinhold, P. Exhaled breath research: What do domestic animal models tell us? In Proceedings of the International Conference on Breath Research (Breath Analysis Summit 2013), Saarbruken, Germany, 9–12 June 2013; pp. 57–59. [Google Scholar]
- Xu, Z.Q.; Broza, Y.Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br. J. Cancer 2013, 108, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Van de Kant, K.; van der Sande, L.; Jöbsis, Q.; van Schayck, O.C.; Dompeling, E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012, 13, 117. [Google Scholar] [CrossRef] [Green Version]
- Probert, C.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; atcliffe, N. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Disease. J. Gasrointestin. Liver Dis. 2009, 18, 337–343. [Google Scholar]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Duan, Y. Diagnosis of breast cancer based on breath analysis: An emerging method. Crit. Rev. Oncol. Hematol. 2013, 87, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, N.; Kasuyama, K.; Esaki, M.; Toshikawa, T. A new portable monitor for measuring odorous compounds in oral, exhaled and nasal air. BMC Oral Health 2011, 20, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Hakim, M.; Billan, S.; Tisch, U.; Peng, G. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. Cancer 2011, 104, 1649–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaler, E.; Hanson, C. Use of an electronic nose to diagnose bacterial sinusitis. Am. J. Rhinol. 2006, 20, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Kuchmenko, T.A. Electronic nose based on nanoweights, expectation and reality. Pure Appl. Chem. 2017, 89, 1587–1601. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Kuchmenko, A.M.; Chursanov, A.V.; Umarkhanov, R.U. C2 Russian Federation, IPC G01N 27/12. Portable gas analyzer: No. 2008136601/28: Appl. 09/11/2008. Publ. Patent 2408007, 27 December 2010. [Google Scholar]
- Kuchmenko, T.A.; Chursanov, A.V.; Umarkhanov, R.U.; Kuchmenko, D.A. C2 Russian Federation, IPC G01N 33/00. Detector for the determination of gas, vapors and dust in the air: No. 2008143170/28: Appl. 10/30/2008. Publ. Patent 2400745, 27 September 2010. [Google Scholar]
- Kuchmenko, T.; Shuba, A.; Umarkhanov, R.; Chernitskiy, A. Portable Electronic Nose for Analyzing the Smell of Nasal Secretions in Calves: Toward Noninvasive Diagnosis of Infectious Bronchopneumonia. Vet. Sci. 2021, 8, 74. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Shuba, A.A. Informative nature of the electronic nose output signals based on the piezoelectric sensors. Anal. Kontrol 2017, 21, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, C.D.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- McGuirk, S.M. Disease management of dairy calves and heifers. Vet. Clin. N. Am. Food. Anim. Pract. 2008, 24, 139–153. [Google Scholar] [CrossRef]
- McGuirk, S.M. Respiratory disease of the bovine neonate. Vet. Clin. N. Am. Food. Anim. Pract. 2009, 25, 121–137. [Google Scholar] [CrossRef]
- Chernitskiy, A.; Shabunin, S.; Kuchmenko, T.; Safonov, V. On-farm diagnosis of latent respiratory failure in calves. Turk. J. Vet. Anim. Sci. 2019, 43, 707–715. [Google Scholar] [CrossRef]
- Chernitskiy, A.E.; Safonov, V.A. Early detection of bovine respiratory disease in calves by induced cough. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 042047. [Google Scholar] [CrossRef]
- Vorobyov, A.A. Microbiology and Immunology; Medicine: Moscow, Russia, 2005; ISBN 5225042716. [Google Scholar]
- Chernitsky, A.E.; Retsky, M.I.; Zolotarev, A.I. Russian Federation, IPC A61B 5/00. Device for Collecting Exhaled Air Condensate from Animals/No. 2013135753/14; Appl. 07/30/2013. Bull. No. 33. Patent No. 134772, 27 November 2013. [Google Scholar]
- Kuchmenko, T.A.; Shuba, A.A.; Drozdova, E.V. Substantiation of the operating life of gas piezosensors in detection of vapors of organic compounds. Russ. J. Appl. Chem. 2015, 88, 1997–2008. [Google Scholar] [CrossRef]
- Korol, A.N. Stationary Phases for Gas-Liquid Chromatography; Chemistry: Moscow, Russia, 1985. [Google Scholar]
- Gancarz, M.; Nawrocka, A.; Rusinek, R. Identification of Volatile Organic Compounds and Their Concentrations Using a Novel Method Analysis of MOS Sensors Signal. Food Sci. 2019, 84, 2077–2085. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Mishina, A.A. Sorption specifics of volatile amines on thin films of acid-base indicators. J. Anal. Chem. 2011, 66, 701–708. [Google Scholar] [CrossRef]
- Španel, P.; Smith, D. Volatile compounds in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 455–460. [Google Scholar] [CrossRef]
- Vershinin, V.I. Methodology of Computer-Assisted Identification of Substances Using Information Retrieval Systems. J. Anal. Chem. 2000, 55, 417–425. [Google Scholar] [CrossRef]
- Ratiu, I.-A.; Bocos-Bintintan, V.; Monedeiro, F.; Milanowski, M.; Ligor, T.; Buszewski, B. An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds. Crit. Rev. Anal. Chem. 2019, 50, 501–512. [Google Scholar] [CrossRef]
- Brannelly, N.T.; Hamilton-Shield, J.P.; Killard, A.J. The measurement of ammonia in human breath and its potential in clinical diagnostics. Crit. Rev. Anal. Chem. 2016, 46, 490–501. [Google Scholar] [CrossRef] [Green Version]
- Kaddes, A.; Fauconnier, M.-L.; Sassi, K.; Nasraoui, B.; Jijakli, M.-H. Endophytic Fungal Volatile Compounds as Solution for Sustainable Agriculture. Molecules 2019, 24, 1065. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R.; Fijten, R.; Smolinska, A.; Dallinga, J.W.; Boumans, M.L.; Stobberingh, E.; Boots, A.W.; Roekaerts, P.M.H.J.; Bergmans, D.C.J.J.; Van Schooten, F.J. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar] [CrossRef] [Green Version]
- Thepen, T.; Kraal, G.; Holt, P. The Role of Alveolar Macrophages in Regulation of Lung Inflammation. Ann. N. Y. Acad. Sci. 1994, 725, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Kalaeva, E.A.; Chernitskiy, A.E.; Kalaev, V.N.; Alkhamed, M. Markers of endogenous intoxication in late-pregnancy cows as predictors of pneumonia in newborn calves. Russ. Agric. Sci. 2019, 45, 580–584. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Shuba, A.A.; Umarkhanov, R.U.; Drozdova, E.V.; Chernitskii, A.E. Application of a Piezoelectric Nose to Assessing the Respiratory System in Calves by Volatile Compounds. J. Anal. Chem. 2020, 75, 645–652. [Google Scholar] [CrossRef]
Type of Sensor | Limit of VOC Detection | Advantages | Disadvantages |
---|---|---|---|
Chemoresistive | 5–500 ppm | High sensitivity, low operating temperature, and a thermal stable structure, simplicity, low cost, small size and ability to be integrated into electronic devices | High sensitivity to water vapor, high possibility of sensor poisoning, low selectivity |
Optical | 1 ppm–1000 ppb | Commercial availability, simplicity of sensor formation | The complexity of creating devices, fluorescent dyes have a short operating time |
Metal oxide | 1–1000 ppm | Low power consumption, the possibility of long battery life, long life of the sensor material, ability to work in explosive environments | Low selectivity, poor sensitivity to organic molecules and relatively low stability caused by recrystallization and surface poisoning processes |
Piezoelectric quartz microbalance | 10 ppm–10 ppb | Linear calibration curve over a wide concentration range, fast response and recovery time, high sensitivity | Fragile sensing element, possibility of electrode corrosion |
Surface acoustic waves (SAW) | 1 ppm–1 ppb | High sensitivity, excellent response time, small size, low cost, ability to work in wired and wireless mode | Membrane aging |
Name | Producer | Designation | Solvent | Type of Sorbent | Sm *, Hz∙m3/g (for BA) | Sm *, Hz∙m3/g (for DEA) |
---|---|---|---|---|---|---|
Polyethylene glycol 2000 | Alfa Aesar, Ward Hill, MA, USA, p.a. | PEG-2000 | Acetone | Universal | 28.8 | 25.5 |
Triton X-100 | Alfa Aesar, Ward Hill, MA, USA, p.a. | TX-100 | Acetone | 27.5 | 43.7 | |
Polyethylene glycol adipate | Reachem, Moscow Russia, (puriss.) | PEGA | Acetone | 41.3 | 19.4 | |
Dicyclohexyl-18-crown-6 | Alfa Aesar, Ward Hill, MA, USA, p.a. | 18-crown-6 | Toluene | Selective to acid | 77.5 | 4.7 |
Polyoxyethylene Sorbitan Monopalmitate, Tween 40 | Reachem, Moscow Russia, (puriss.) | TW | Toluene | 71.3 | 5.1 | |
Polydiethylene glycol succinate | Reachem, Moscow Russia, (puriss.) | PDEGS | Acetone | Selective to amines | 8.3 | 98 |
Mixture Number | Ammonia (0.775 * g/m3) | Triethylamine (0.0014 g/m3) | Acetic Acid (0.0013 g/m3) | 2-methylpropanoic Acid (0.0006 g/m3) |
---|---|---|---|---|
1 | + | + | + | + |
2 | + | − | − | + |
3 | + | + | − | + |
4 | + | + | − | − |
5 | − | + | + | + |
6 | − | + | + | − |
7 | + | − | + | + |
8 | − | − | − | − |
No. | Masses of Sorbents in a Coating | Technique of Formation (TF) | |
---|---|---|---|
m1 ± 0.15, µg | m2 ± 0.15, µg | (“+”—Isolated, ”−”—Joint) | |
1 | 10 | 10 | + |
2 | 5 | 10 | − |
3 | 10 | 5 | − |
4 | 5 | 5 | + |
Polycomposite Coating (1/2) | Mass of Sorbent 1 in Coating, µg | Mass of Sorbent 2 in Coating, µg | Technique of Formation |
---|---|---|---|
18-crown-6/PEGA | 4.7 | 7.5 | joint deposition |
TX-100/TW | 5.3 | 11.3 | joint deposition |
18-crown-6/PDEGS | 6.9 | 3.6 | isolated deposition |
PEG-2000/TX-100 | 7.5 | 1.9 | joint deposition |
VOC | Polycomposite Coating (1/2) | |||
---|---|---|---|---|
18-crown-6/PEGA | 18-crown-6/PDEGS | TX-100/PEG-2000 | TX100/TW | |
Ethanoic acid | ∆Fmax = 14 + 2 m2 − 4 TF | ∆Fmax = 10 − 2.5 m2 | ∆Fmax = 21 + 3 m2 − 4 TF | ∆Fmax = 10 + 2 m2 |
Butanoic acid | ∆Fmax = 12+ 2 m2 − 5 TF | ∆Fmax = 9.5 + 3 m1 − 2.5 m2 | ∆Fmax = 19 + 5 m2 − 3 TF | ∆Fmax = 9 + 1.5 m2 |
2-methylpropanoic acid | - * | - | ∆Fmax = 24 + 3 m2 − 3 TF | ∆Fmax = 11.5 + 1.5 m2 |
Pentanoic acid | ∆Fmax = 14 + 3.5 m2 − 3 TF | ∆Fmax = 11 − 3 m2 + TF | - | - |
3-methylbutanoic acid | ∆Fmax = 14 + 2 m2 − 4 TF | ∆Fmax = 11 + 2 m1 − 4 m2 | ∆Fmax = 20 + 3 m2 − 7 TF | ∆Fmax = 8 + m2 − 2 TF |
Ammonia | - | - | ∆Fmax = 30 − 8m1 − 7 m2 | ∆Fmax = 11 + 2 m1 + 3 m2 |
Diethylamine | - | ∆Fmax = 17.5 − 4.5 m2 | ∆Fmax = 46 − 7m1 + 12 TF | ∆Fmax = 14 + 3 m1 + 4 m2 |
Ethanol | ∆Fmax = 21 + 2 m1 + 6 m2 | ∆Fmax = 16.5 − 4.5 m2 + 3.5 TF | ∆Fmax = 33 + 5.5 m1 − 3 TF | ∆Fmax = 21 + 3 m1 + 4.5 m2 |
VOC | Equation |
---|---|
Acetic acid | = 47 + 0.27 (18-crown-6) + 0.09 (PDEGS) − 0.003 (18-crown-6) (PEGA) |
Butanoic acid | = 2.0 + 1.3 (18-crown-6) + 0.65 (PDEGS) + 1.1 (PEGA) |
3-methylbutanoic acid | = 48 + 0.13 (18-crown-6) + 0.14 (PDEGS) − 0.0006 (18-crown-6) (PEGA) − 0.0005 (18-crown-6) (PDEGS) |
Diethylamine | = 1.3 + 0.12 (18-crown-6) + 0.64 (PDEGS) |
Ethanol | = 5.6 + 0.07 (18-crown-6) + 0.17 (PDEGS) + 0.04 (PEGA) |
Substance | Experimental | Calculated | Error, % |
---|---|---|---|
Acetic acid | 104 | 96.8 | 6.70 |
Butanoic acid | 41.8 | 47.3 | 13.2 |
3-methylbutanoic acid | 101 | 88.6 | 12.1 |
Diethylamine | 15.3 | 14.1 | 8.02 |
Ethanol | 8.91 | 7.92 | 11.1 |
VOC | Individual Coating | Polycomposite Coating (1/2/3) | |||||
---|---|---|---|---|---|---|---|
18-crown-6 | PEGA | PDEGS | 18-crown-6 /PEGA | PEGA/ PDEGS | 18-crown-6/ PDEGS | 18-crown-6/PEGA/ PDEGS | |
Acetic acid | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Butanoic acid | 40 | 60 | 5 | 30 | 60 | 15 | 10 (60) * |
3-methylbutanoic acid | 60 | 40 | 5 | 60 | 40 | 5 | 5 (60) |
Diethylamine | 60 | 30 | 60 | 60 | 60 | 60 | 30 (60) |
Ethanol | 60 | 10 | 60 | 60 | 60 | 60 | 10 (60) |
Water | 30 | 15 | 60 | 10 | 60 | 60 | 60 |
VOC | Signals Sensors with Individual Sorbent 1 and 2 | A1/2 | Response of Sensor with Polycomposite Coating (1/2) for 5 and 60 s of Sorption | A12(5/60) | ∆, % | ||
---|---|---|---|---|---|---|---|
∆F1 ± 2, Hz | ∆F2 ± 2, Hz | ∆F(1/2),5 | ∆F(1/2),60 | ||||
1—PEGA | 2—PDEGS | PEGA/PDEGS | |||||
Acetic acid | 8 | 14 | 0.6 | 12 | 22 | 0.5 | 20 |
2-methylpropanoic acid | 9 | 13 | 0.7 | 7 | 10 | 0.7 | 0 |
Ammonia (1% vol. aqua solution) | 11 | 60 | 0.2 | 9 | 50 | 0.2 | 0 |
Triethylamine | 84 | 92 | 0.9 | 65 | 82 | 0.8 | 13 |
Ethanol | 18 | 25 | 0.7 | 22 | 35 | 0.6 | 17 |
Butanol | 12 | 20 | 0.6 | 17 | 25 | 0.7 | 14 |
1—Tween | 2—TX-100 | TX-100/Tween | |||||
Acetic acid | 6 | 10 | 0.6 | 8 | 13 | 0.6 | 0 |
2-methylpropanoic acid | 7 | 9 | 0.8 | 6 | 12 | 0.5 | 60 |
Ammonia (1% vol. aqua solution) | 13 | 7 | 1.9 | 14 | 7 | 2.0 | 5 |
Triethylamine | 35 | 10 | 3.5 | 19 | 10 | 1.9 | 84 |
Ethanol | 10 | 17 | 0.6 | 15 | 23 | 0.7 | 14 |
Butanol | 8 | 15 | 0.5 | 7 | 15 | 0.5 | 0 |
Designation | Equation Aij∑ | Acetic Acid | 2-Methylpropanoic Acid | Triethylamine | Ammonia |
---|---|---|---|---|---|
Aij∑1 | (∆F1,10 */∆F3,40): (∆F2,16/∆F4,16) | 0.6 | 0.8 | 1.5 | 2.0 |
Aij∑2 | (∆F2,12/∆F3,40): (∆F3,40/∆F4,40) | 0.3 | 2.0 | 0.5 | 6.7 |
Aij∑3 | (∆F1,10/∆F3,12): (∆F2,16/∆F4,16) | 1.0 | 0.7 | 2.0 | 0.9 |
Aij∑4 | (∆F2,40/∆F4,10): (∆F2,10/∆F3,40) | 2.3 | 0.8 | 1.6 | 0.4 |
Aij∑5 | (∆F1,16/∆F2,10): (∆F2,10/∆F3,40) | 5.0 | 0.4 | 2.0 | 1.5 |
Aij∑6 | (∆F2,12/∆F4,12): (∆F2,16/∆F4,16) | 1.0 | 1.8 | 0.7 | 0.4 |
Aij∑7 | (∆F2,16/∆F4,16): (∆F2,40/∆F4,40) | 0.8 | 1.2 | 1.8 | 1.2 |
Designation | Number of Mixture | Coincidence Criterion d | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Aij∑1 | 2.2 | 2.0 | 1.6 | 1.8 | 1.6 | 1.2 | 2.2 | 1.3 | 0.2 |
Aij∑2 | 4.0 | 3.5 | 3.8 | 2.8 | 0.9 | 0.8 | 2.8 | 1.0 | 0.6 |
Aij∑3 | 2.4 | 3.0 | 1.7 | 2.3 | 2.4 | 1.3 | 3.4 | 1.5 | 0.4 |
Aij∑4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.7 | 0.7 | 0.5 | 0.6 | 0.3 |
Aij∑5 | 0.5 | 0.6 | 0.4 | 0.7 | 1.4 | 1.1 | 0.7 | 0.9 | 0.2 |
Aij∑6 | 1.2 | 1.0 | 1.1 | 1.0 | 1.0 | 0.8 | 1.2 | 1.0 | 0.3 |
Aij∑7 | 1.0 | 1.2 | 1.2 | 1.2 | 1.0 | 1.0 | 1.0 | 1.2 | 0.2 |
Substance | Parameter Aij∑ | Sensitivity, % | Specificity, % |
---|---|---|---|
Ammonia | Aij∑1 | 73 | 100 |
Triethylamine | Aij∑3 | 67 | 100 |
Acetic acid | Aij∑5 | 100 | 100 |
2-methylpropanoic acid | Aij∑7 | 73 | 100 |
Indicator | Number of Calf/Biosample | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
WRSC | 2 | 3 | 3 | 5 | 8 | 7 | |
Presence BRD | − | − | +/− | + | + | + | |
Medium molecular weight peptides in EBC, r.u. | 0.076 | 0.203 | 0.069 | 0.123 | 0.165 | 0.224 | |
Malonic dialdehyde in EBC, nM/100 L BB | 0.121 | 0.210 | 0.084 | 0.180 | 0.251 | 0.390 | |
pH EBC | 7.35 | 7.34 | 7.32 | 7.58 | 7.63 | 7.66 | |
Presence in a tracheal wash | Ent. faecium | poor growth | poor growth | Moderate growth | - | - | - |
Staph. Epidermidis | - | - | - | Moderate growth | |||
Ent. faecalis | - | - | Moderate growth | ||||
E. coli | - | - | strain O115 Moderate growth | O9, O26 Moderate growth | O115, O8 Moderate growth | ||
Penicillium spp. | - | - | - | - | poor growth | - | |
Asp. fumigatus | - | - | - | - | - | slightly. | |
Rhizopus nigricans | - | - | - | - | - |
Designation | Sample Number | d | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Aij∑1 | 1.2 | 1.4 | 1.8 | 1.7 | 1.2 | 1.0 | 0.2 |
Aij∑2 | 0.6 | 1.0 | 0.7 | 0.6 | 1.0 | 0.8 | 0.2 |
Aij∑3 | 1.5 | 1.4 | 1.8 | 2.0 | 1.2 | 1.0 | 0.4 |
Aij∑4 | 0.7 | 0.5 | 0.4 | 1.0 | 0.4 | 0.4 | 0.3 |
Aij∑5 | 1.3 | 0.8 | 1.0 | 1.6 | 0.6 | 0.6 | 0.2 |
Aij∑6 | 0.6 | 1.0 | 1.0 | 1.3 | 1.0 | 1.0 | 0.3 |
Aij∑7 | 0.8 | 1.0 | 0.8 | 0.6 | 1.0 | 0.8 | 0.2 |
Characteristics | Sensor Array | Polycomposite Coatings |
---|---|---|
Specific molar sensitivity, Smol, Hz m3/mol∙μg | 40–1500 | 40–2500 |
Selectivity | Depends on sensitivity of sorbents | Depends on sensitivity of sorbents |
Response time | Until 60 s | Depends on kinetic of sorption of selected sorbents |
Time of full regeneration of sensors surface into closed detection cell | 2–3 min | 1 min |
Keeping the analytical information at miniaturization of detection cell in 2–10 times | No | Yes |
Number of studied sorbents per one measurement | 8 | 16–24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuba, A.; Kuchmenko, T.; Umarkhanov, R. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. Sensors 2022, 22, 8529. https://doi.org/10.3390/s22218529
Shuba A, Kuchmenko T, Umarkhanov R. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. Sensors. 2022; 22(21):8529. https://doi.org/10.3390/s22218529
Chicago/Turabian StyleShuba, Anastasiia, Tatiana Kuchmenko, and Ruslan Umarkhanov. 2022. "Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application" Sensors 22, no. 21: 8529. https://doi.org/10.3390/s22218529
APA StyleShuba, A., Kuchmenko, T., & Umarkhanov, R. (2022). Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. Sensors, 22(21), 8529. https://doi.org/10.3390/s22218529