Artificial Intelligence of Things Applied to Assistive Technology: A Systematic Literature Review
Abstract
:1. Introduction
2. Assisted Technology, AIoT, and Machine Learning
3. Research Methodology
3.1. Research Purpose
3.2. Research Process
3.3. Study Selection Criteria
3.4. Quality Assessment
3.5. Data Extraction
3.6. Threats to the Validity of the Study
4. Results
4.1. Contributions of Selected Articles
4.2. Research Questions Answers
4.3. Threats to the Validity of the Study
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Report on Disability; WHO: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/handle/10665/44575 (accessed on 14 September 2022).
- King, P.; Guevara Martínez, E. Robotic Assistive Technologies: Principles and Practice. IEEE Pulse 2020, 11, 27–28. [Google Scholar] [CrossRef]
- Fall, C.L.; Gagnon-Turcotte, G.; Dubé, J.F.; Gagné, J.S.; Delisle, Y.; Campeau-Lecours, A.; Gosselin, C.; Gosselin, B. Wireless sEMG-Based Body–Machine Interface for Assistive Technology Devices. IEEE J. Biomed. Health Inform. 2017, 21, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, N.; Sharma, D.; Singh, J.; Sharma, B.; Narang, S. Assistive Navigation System for Visually Impaired and Blind People: A Review. In Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24–26 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Baucas, M.J.; Spachos, P.; Gregori, S. Internet-of-Things Devices and Assistive Technologies for Health Care: Applications, Challenges, and Opportunities. IEEE Signal Process. Mag. 2021, 38, 65–77. [Google Scholar] [CrossRef]
- Hussain Shah, S.J.; Albishri, A.A.; Lee, Y. Deep Learning Framework for Internet of Things for People With Disabilities. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3609–3614. [Google Scholar] [CrossRef]
- Sung, T.W.; Tsai, P.W.; Gaber, T.; Lee, C.Y. Artificial Intelligence of Things (AIoT) technologies and applications. Wirel. Commun. Mob. Comput. 2021, 2021, 9781271. [Google Scholar] [CrossRef]
- Polyakov, E.V.; Mazhanov, M.S.; Rolich, A.Y.; Voskov, L.S.; Kachalova, M.V.; Polyakov, S.V. Investigation and development of the intelligent voice assistant for the Internet of Things using machine learning. In Proceedings of the 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 14–16 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Qian, K.; Zhang, Z.; Yamamoto, Y.; Schuller, B.W. Artificial Intelligence Internet of Things for the Elderly: From Assisted Living to Health-Care Monitoring. IEEE Signal Process. Mag. 2021, 38, 78–88. [Google Scholar] [CrossRef]
- Carter, D.; Kolencik, J.; Cug, J. Smart Internet of Things-enabled Mobile-based Health Monitoring Systems and Medical Big Data in COVID-19 Telemedicine. Am. J. Med. Res. 2021, 8, 20–30. [Google Scholar]
- Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 7789–7817. [Google Scholar] [CrossRef]
- Soma, S.; Patil, N.; Salva, F.; Jadhav, V. An Approach to Develop a Smart and Intelligent Wheelchair. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Jacob, S.; Alagirisamy, M.; Xi, C.; Balasubramanian, V.; Srinivasan, R.; Parvathi, R.; Jhanjhi, N.Z.; Islam, S.M.N. AI and IoT-Enabled Smart Exoskeleton System for Rehabilitation of Paralyzed People in Connected Communities. IEEE Access 2021, 9, 80340–80350. [Google Scholar] [CrossRef]
- Bryant, B.R.; Seok, S. Introduction to the special series: Technology and disabilities in education. Assist. Technol. 2017, 29, 121–122. [Google Scholar] [CrossRef]
- Kitchenham, B.; Brereton, P. A systematic review of systematic review process research in software engineering. Inf. Softw. Technol. 2013, 55, 2049–2075. [Google Scholar] [CrossRef]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping studies in software engineering. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 26–27 June 2008; pp. 68–77. [Google Scholar]
- Barbara, K.; Tore, D.; Magne, J. Evidence-based Software Engineering. In Proceedings of the 26th International Conference on Software Engineering, (ICSE ’04), Edinburgh, UK, 23–28 May 2004; IEEE Computer Society: Washington DC, USA, 2004; pp. 273–281, ISBN 0-7695-2163-0. [Google Scholar]
- Kitchenham, B.A.; Dyba, T.; Jorgensen, M. Evidence-based software engineering for practitioners. IEEE Softw. 2005, 22, 58–65. [Google Scholar]
- Peraković, D.; Periša, M.; Cvitić, I. Analysis of the Possible Application of Assistive Technology in the Concept of Industry 4.0. In Proceedings of the XXXVI Simpozijum o Novim Tehnologijama u Poštanskom i Telekomunikacionom Saobraćaju—PosTel 2018, Beograd, Serbia, 4–5 December 2018. [Google Scholar]
- Viel, F.; Silva, L.A.; Valderi Leithardt, R.Q.; Zeferino, C.A. Internet of Things: Concepts, Architectures and Technologies. In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 909–916. [Google Scholar] [CrossRef]
- Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Bruns, R.; Nied, A.; Seman, L.O.; Gonzalez, G.V.; Leithardt, V.R.Q.; Yow, K.C. A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound. Appl. Sci. 2021, 11, 1592. [Google Scholar] [CrossRef]
- Leithardt, V.; Santos, D.; Silva, L.; Viel, F.; Zeferino, C.; Silva, J. A Solution for Dynamic Management of User Profiles in IoT Environments. IEEE Lat. Am. Trans. 2020, 18, 1193–1199. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Kasburg, C.; Nied, A.; Klaar, A.C.R.; Ferreira, F.C.S.; Branco, N.W. Hybrid deep learning for power generation forecasting in active solar trackers. IET Gener. Transm. Distrib. 2020, 14, 5667–5674. [Google Scholar] [CrossRef]
- Kasburg, C.; Stefenon, S.F. Deep Learning for Photovoltaic Generation Forecast in Active Solar Trackers. IEEE Lat. Am. Trans. 2019, 17, 2013–2019. [Google Scholar] [CrossRef]
- Dingli, A.; Fournier, K.S. Financial time series forecasting-a deep learning approach. Int. J. Mach. Learn. Comput. 2017, 7, 118–122. [Google Scholar] [CrossRef]
- Salazar, L.H.A.; Leithardt, V.R.Q.; Parreira, W.D.; da Rocha Fernandes, A.M.; Barbosa, J.L.V.; Correia, S.D. Application of Machine Learning Techniques to Predict a Patient’s No-Show in the Healthcare Sector. Future Internet 2022, 14, 3. [Google Scholar] [CrossRef]
- Salazar, L.H.; Fernandes, A.M.R.; Dazzi, R.; Raduenz, J.; Garcia, N.M.; Leithardt, V.R.Q. Prediction of Attendance at Medical Appointments Based on Machine Learning. In Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Seville, Spain, 24–27 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Dick, S. Artificial intelligence. Harv. Data Sci. Rev. 2019, 1, 1–8. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Branco, N.W.; Nied, A.; Bertol, D.W.; Finardi, E.C.; Sartori, A.; Meyer, L.H.; Grebogi, R.B. Analysis of training techniques of ANN for classification of insulators in electrical power systems. IET Gener. Transm. Distrib. 2020, 14, 1591–1597. [Google Scholar] [CrossRef]
- Suzin, J.C.; Zeferino, C.A.; Leithardt, V.R.Q. Digital Statelessness. In Proceedings of the New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence; de Paz Santana, J.F., de la Iglesia, D.H., López Rivero, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 178–189. [Google Scholar] [CrossRef]
- Muniz, R.N.; Stefenon, S.F.; Buratto, W.G.; Nied, A.; Meyer, L.H.; Finardi, E.C.; Kühl, R.M.; Sá, J.A.S.d.; Rocha, B.R.P.d. Tools for Measuring Energy Sustainability: A Comparative Review. Energies 2020, 13, 2366. [Google Scholar] [CrossRef]
- da Silva, L.D.L.; Pereira, T.F.; Leithardt, V.R.Q.; Seman, L.O.; Zeferino, C.A. Hybrid Impedance-Admittance Control for Upper Limb Exoskeleton Using Electromyography. Appl. Sci. 2020, 10, 7146. [Google Scholar] [CrossRef]
- Kaur, J.; Khan, M.A.; Iftikhar, M.; Imran, M.; Emad Ul Haq, Q. Machine Learning Techniques for 5G and beyond. IEEE Access 2021, 9, 23472–23488. [Google Scholar] [CrossRef]
- Lopes, H.; Pires, I.M.; Sánchez San Blas, H.; García-Ovejero, R.; Leithardt, V. PriADA: Management and Adaptation of Information Based on Data Privacy in Public Environments. Computers 2020, 9, 77. [Google Scholar] [CrossRef]
- Silva, L.A.; Leithardt, V.R.Q.; Rolim, C.O.; González, G.V.; Geyer, C.F.R.; Silva, J.S. PRISER: Managing Notification in Multiples Devices with Data Privacy Support. Sensors 2019, 19, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, H.; Américo, J.; Leal, O.; Stefenon, S. Development of Measurement Device and Data Acquisition for Electric Vehicle. Rev. GEINTEC 2021, 11, 5809–5822. [Google Scholar]
- Stefenon, S.F.; Furtado Neto, C.S.; Coelho, T.S.; Nied, A.; Yamaguchi, C.K.; Yow, K.C. Particle swarm optimization for de sign of insulators of distribution power system based on finite element method. Electr. Eng. 2022, 104, 615–622. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Pavan, B.A.; Ovejero, R.G.; Leithardt, V.R.Q. Optimal design of electrical power distribution grid spacers using finite element method. IET Gener. Transm. Distrib. 2022, 16, 1865–1876. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Kasburg, C.; Freire, R.Z.; Silva Ferreira, F.C.; Bertol, D.W.; Nied, A. Photovoltaic power forecasting using wavelet Neuro-Fuzzy for active solar trackers. J. Intell. Fuzzy Syst. 2021, 40, 1083–1096. [Google Scholar] [CrossRef]
- Turing, A.M. Computing Machinery and Intelligence. Mind 1950, LIX, 433–460. [Google Scholar] [CrossRef]
- Tissot, H.C.; Shah, A.D.; Brealey, D.; Harris, S.; Agbakoba, R.; Folarin, A.; Romao, L.; Roguski, L.; Dobson, R.; Asselbergs, F.W. Natural Language Processing for Mimicking Clinical Trial Recruitment in Critical Care: A Semi-Automated Simulation Based on the LeoPARDS Trial. IEEE J. Biomed. Health Inform. 2020, 24, 2950–2959. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.; Ning, S.; Liu, Z.; Lang, C.; Lin, Y.; Huang, D. Combining Context and Knowledge Representations for Chemical-Disease Relation Extraction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1879–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.A.; Brown, M.A. Spatio-Temporal Reasoning within a Neural Network framework for Intelligent Physical Systems. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 274–280. [Google Scholar] [CrossRef]
- Nasr, M.; Islam, M.M.; Shehata, S.; Karray, F.; Quintana, Y. Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects. IEEE Access 2021, 9, 145248–145270. [Google Scholar] [CrossRef]
- Fuadi, D.H.; Novita, D.; Taufik, M. Socially Assistive Robot Interaction by Objects Detection and Face Recognition on Convolutional Neural Network for Parental Monitoring. In Proceedings of the 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Bandung, Indonesia, 28–30 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kearney, K.T.; Presenza, D.; Saccà, F.; Wright, P. Key challenges for developing a Socially Assistive Robotic (SAR) solution for the health sector. In Proceedings of the 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, Spain, 17–19 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Sarkar, P.P.; Tohin, M.A.; Khaled, M.A.; Islam, M.R. Design Process of an Affordable Smart Robotic Crutch for Paralyzed Patients. In Proceedings of the 2019 IEEE International Conference on Robotics, Automation, Artificial-Intelligence, and Internet-of-Things (RAAICON), Dhaka, Bangladesh, 29 November–1 December 2019; pp. 112–115. [Google Scholar] [CrossRef]
- Caliwag, A.; Angsanto, S.R.; Lim, W. Korean Sign Language Translation Using Machine Learning. In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 826–828. [Google Scholar] [CrossRef]
- Feng, S.; Yuan, T. Sign language translation based on new continuous sign language dataset. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 24–26 June 2022; pp. 491–494. [Google Scholar] [CrossRef]
- Hossain, S.; Sarma, D.; Mittra, T.; Alam, M.N.; Saha, I.; Johora, F.T. Bengali Hand Sign Gestures Recognition using Convolutional Neural Network. In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp. 636–641. [Google Scholar] [CrossRef]
- Suardi, C.; Handayani, A.N.; Asmara, R.A.; Wibawa, A.P.; Hayati, L.N.; Azis, H. Design of Sign Language Recognition Using E-CNN. In Proceedings of the 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Surabaya, Indonesia, 9–11 April 2021; pp. 166–170. [Google Scholar] [CrossRef]
- Mohameed, R.A.A.; Naji, R.M.S.; Ahmeed, A.M.A.; Saeed, D.A.A.; Mosleh, M.A.A. Automated translation for Yemeni’s Sign Language to Text UsingTransfer Learning-based Convolutional Neural Networks. In Proceedings of the 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 10–12 August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zikky, M.; Hakkun, R.Y.; Ainun Rizqi, A.F.; Hamid, A.; Basuki, A. Development of Educational Game for Recognizing Indonesian 436 Sign Language (SIBI) and Breaking Down the Communication Barrier with Deaf People. In Proceedings of the 2017 21st International Computer Science and Engineering Conference (ICSEC), Bangkok, Thailand, 15–18 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Silva, M.C.; Bertol, D.W.; Meyer, L.H.; Nied, A. Fault diagnosis of insulators from ultrasound detection using neural networks. J. Intell. Fuzzy Syst. 2019, 37, 6655–6664. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Sopelsa Neto, N.F.; Meyer, L.H.; Nied, A.; Yow, K.C. Echo state network applied for classification of medium voltage insulators. Int. J. Electr. Power Energy Syst. 2022, 134, 107336. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Yow, K.C.; Mariani, V.C.; dos Santos Coelho, L.; Seman, L.O. Time series forecasting using ensemble learning methods for emergency prevention in hydroelectric power plants with dam. Electr. Power Syst. Res. 2022, 202, 107584. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; Stefenon, S.F.; de Lima, J.D.; Nied, A.; Mariani, V.C.; Coelho, L.S. Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning. Energies 2020, 13, 5190. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; Coelho, L.S.; Leithardt, V.R.Q.; Silva, L.A.; Seman, L.O. Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting. IEEE Access 2021, 9, 66387–66397. [Google Scholar] [CrossRef]
- Corso, M.P.; Perez, F.L.; Stefenon, S.F.; Yow, K.C.; Ovejero, R.G.; Leithardt, V.R.Q. Classification of Contaminated Insulators Using k-Nearest Neighbors Based on Computer Vision. Computers 2021, 10, 112. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; Coelho, L.S.; da Rocha, D.F.M.; Grebogi, R.B.; Ruano, A.E.B. Wavelet group method of data handling for fault prediction in electrical power insulators. Int. J. Electr. Power Energy Syst. 2020, 123, 106269. [Google Scholar] [CrossRef]
- Fernandes, F.; Stefenon, S.F.; Seman, L.O.; Nied, A.; Ferreira, F.C.S.; Subtil, M.C.M.; Klaar, A.C.R.; Leithardt, V.R.Q. Long short-term memory stacking model to predict the number of cases and deaths caused by COVID-19. J. Intell. Fuzzy Syst. 2022, 6, 6221–6234. [Google Scholar] [CrossRef]
- Vieira, J.C.; Sartori, A.; Stefenon, S.F.; Perez, F.L.; de Jesus, G.S.; Leithardt, V.R.Q. Low-Cost CNN for Automatic Violence Recognition on Embedded System. IEEE Access 2022, 10, 25190–25202. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Singh, G.; Yow, K.C.; Cimatti, A. Semi-ProtoPNet Deep Neural Network for the Classification of Defective Power Grid Distribution Structures. Sensors 2022, 22, 4859. [Google Scholar] [CrossRef] [PubMed]
- Leithardt, V. Classifying garments from fashion-MNIST dataset through CNNs. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 989–994. [Google Scholar]
- dos Santos, G.H.; Seman, L.O.; Bezerra, E.A.; Leithardt, V.R.Q.; Mendes, A.S.; Stefenon, S.F. Static Attitude Determination Using Convolutional Neural Networks. Sensors 2021, 21, 6419. [Google Scholar] [CrossRef] [PubMed]
- Stefenon, S.F.; Freire, R.Z.; Coelho, L.S.; Meyer, L.H.; Grebogi, R.B.; Buratto, W.G.; Nied, A. Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System. Energies 2020, 13, 484. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H. Deep and Shallow Architecture of Multilayer Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2477–2486. [Google Scholar] [CrossRef]
- Kim, D.E.; Gofman, M. Comparison of shallow and deep neural networks for network intrusion detection. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018; pp. 204–208. [Google Scholar] [CrossRef]
- Salazar, L.H.; Fernandes, A.; Dazzi, R.; Garcia, N.; Leithardt, V.R. Using different models of machine learning to predict attendance at medical appointments. J. Inf. Syst. Eng. Manag. 2020, 5, em0122. [Google Scholar] [CrossRef]
- Medeiros, A.; Sartori, A.; Stefenon, S.F.; Meyer, L.H.; Nied, A. Comparison of artificial intelligence techniques to failure prediction in contaminated insulators based on leakage current. J. Intell. Fuzzy Syst. 2022, 42, 3285–3298. [Google Scholar] [CrossRef]
- Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Fault Prediction Based on Leakage Current in Contaminated Insulators Using Enhanced Time Series Forecasting Models. Sensors 2022, 22, 6121. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Grebogi, R.B.; Freire, R.Z.; Nied, A.; Meyer, L.H. Optimized Ensemble Extreme Learning Machine for Classification of Electrical Insulators Conditions. IEEE Trans. Ind. Electron. 2020, 67, 5170–5178. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Corso, M.P.; Nied, A.; Perez, F.L.; Yow, K.C.; Gonzalez, G.V.; Leithardt, V.R.Q. Classification of insulators using neural network based on computer vision. IET Gener. Transm. Distrib. 2021, 16, 1096–1107. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Bruns, R.; Sartori, A.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Analysis of the Ultrasonic Signal in Polymeric Contaminated Insulators Through Ensemble Learning Methods. IEEE Access 2022, 10, 33980–33991. [Google Scholar] [CrossRef]
- Zahraee, S.; Khalaji Assadi, M.; Saidur, R. Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renew. Sustain. Energy Rev. 2016, 66, 617–630. [Google Scholar] [CrossRef]
- Islam, J.; Vasant, P.M.; Negash, B.M.; Laruccia, M.B.; Myint, M.; Watada, J. A holistic review on artificial intelligence techniques for well placement optimization problem. Adv. Eng. Softw. 2020, 141, 102767. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Schutel Furtado Neto, C.; Nied, A.; Seganfredo, D.M.; Garcia da Luz, F.; Sabino, P.H.; Torreblanca González, J.; Quietinho Leithardt, V.R. Electric Field Evaluation Using the Finite Element Method and Proxy Models for the Design of Stator Slots in a Permanent Magnet Synchronous Motor. Electronics 2020, 9, 1975. [Google Scholar] [CrossRef]
- Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Banijamali, A.; Pakanen, O.P.; Kuvaja, P.; Oivo, M. Software architectures of the convergence of cloud computing and the Internet of Things: A systematic literature review. Inf. Softw. Technol. 2020, 122, 106271. [Google Scholar] [CrossRef]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report, ver. 2.3 ebse Technical Report; EBSE: Goyang-si, Korea, 2007. [Google Scholar]
- Júnior, M.J.; Maia, O.B.; Oliveira, H.; Souto, E.; Barreto, R. Assistive Technology through Internet of Things and Edge Computing. In Proceedings of the 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 330–332. [Google Scholar] [CrossRef]
- Chang, W.J.; Yu, Y.X.; Chen, J.H.; Zhang, Z.Y.; Ko, S.J.; Yang, T.H.; Hsu, C.H.; Chen, L.B.; Chen, M.C. A Deep Learning Based Wearable Medicines Recognition System for Visually Impaired People. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 18–20 March 2019; pp. 207–208. [Google Scholar] [CrossRef]
- Ghazal, M.; Basmaji, T.; Qasymeh, M.; Salim, R.; Khalil, A. Localized Assistive Scene Understanding using Deep Learning and the IoT. In Proceedings of the 2019 7th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Istanbul, Turkey, 26–28 August 2019; pp. 53–58. [Google Scholar] [CrossRef]
- Chang, W.J.; Chen, L.B.; Hsu, C.H.; Chen, J.H.; Yang, T.C.; Lin, C.P. MedGlasses: A Wearable Smart-Glasses-Based Drug Pill Recognition System Using Deep Learning for Visually Impaired Chronic Patients. IEEE Access 2020, 8, 17013–17024. [Google Scholar] [CrossRef]
- Rao, S.; Singh, V.M. Computer Vision, and Iot Based Smart System for Visually Impaired People. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 552–556. [Google Scholar] [CrossRef]
- Chang, W.J.; Chen, L.B.; Sie, C.Y.; Yang, C.H. An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings. IEEE Trans. Consum. Electron. 2021, 67, 3–11. [Google Scholar] [CrossRef]
- Bal, D.; Arfi, A.M.; Dey, S. Dynamic Hand Gesture Pattern Recognition Using Probabilistic Neural Network. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Su, Y.S.; Chou, C.H.; Chu, Y.L.; Yang, Z.Y. A Finger-Worn Device for Exploring Chinese Printed Text with Using CNN Algorithm on a Micro IoT Processor. IEEE Access 2019, 7, 116529–116541. [Google Scholar] [CrossRef]
- Yadav, D.K.; Mookherji, S.; Gomes, J.; Patil, S. Intelligent Navigation System for the Visually Impaired—A Deep Learning Approach. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 652–659. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, J.; Lv, Z.; Song, H. Wearable Vision Assistance System Based on Binocular Sensors for Visually Impaired Users. IEEE Internet Things J. 2019, 6, 1375–1383. [Google Scholar] [CrossRef]
- Li, T.; Yan, Y.; Du, W. Sign Language Recognition Based on Computer Vision. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 24–26 June 2022; pp. 927–931. [Google Scholar] [CrossRef]
- Punsara, K.; Premachandra, H.; Chanaka, A.; Wijayawickrama, R.; Nimsiri, A.; Rajitha de, S. IoT Based Sign Language Recognition System. In Proceedings of the 2020 2nd International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 10–11 December 2020; Volume 1, pp. 162–167. [Google Scholar] [CrossRef]
- Boppana, L.; Ahamed, R.; Rane, H.; Kodali, R.K. Assistive Sign Language Converter for Deaf and Dumb. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (Green- Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14–17 July 2019; pp. 302–307. [Google Scholar] [CrossRef]
- Al Shabibi, M.A.K.; Kesavan, S.M. IoT Based Smart Wheelchair for Disabled People. In Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India, 30–31 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Javed, A.; Sarwar, M. ur Rehman S, Khan HU, Al-Otaibi YD, Alnumay WS. Pp-spa: Privacy preserved smartphone-based personal assistant to improve routine life functioning of cognitive impaired individuals. Neural Process Lett 2021, 10, 1–18. [Google Scholar] [CrossRef]
- Kandoth, A.; Arya, N.R.; Mohan, P.R.; Priya, T.V.; Geetha, M. Dhrishti: A Visual Aiding System for Outdoor Environment. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 305–310. [Google Scholar] [CrossRef]
- Sharma, S.; Dudeja, R.K.; Aujla, G.S.; Bali, R.S.; Kumar, N. DeTrAs: Deep learning-based healthcare framework for IoT-based assistance of Alzheimer patients. Neural Comput. Appl. 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Baby, C.J.; Mazumdar, A.; Sood, H.; Gupta, Y.; Panda, A.; Poonkuzhali, R. Parkinson’s Disease Assist Device Using Machine Learning and Internet of Things. In Proceedings of the 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018; pp. 0922–0927. [Google Scholar] [CrossRef]
- Wang, K.J.; Tung, H.W.; Huang, Z.; Thakur, P.; Mao, Z.H.; You, M.X. EXGbuds: Universal wearable assistive device for disabled people to interact with the environment seamlessly. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 369–370. [Google Scholar] [CrossRef]
- Kumar, P.; Gandhi, U.; Varatharajan, R.; Manogaran, G.; Jidhesh, R.; Vadivel, T. Intelligent face recognition and navigation system using neural learning for smart security in Internet of Things. Clust. Comput. 2017, 22, 7733–7744. [Google Scholar] [CrossRef]
- Lee, B.G.; Chong, T.W.; Chung, W.Y. Sensor fusion of motion-based sign language interpretation with deep learning. Sensors 2020, 20, 6256. [Google Scholar] [CrossRef]
- Sreeraj, M.; Joy, J.; Kuriakose, A.; Bhameesh, M.B.; Babu, A.K.; Kunjumon, M. VIZIYON: Assistive handheld device for visually challenged. Procedia Comput. Sci. 2020, 171, 2486–2492. [Google Scholar] [CrossRef]
- Hengle, A.; Kulkarni, A.; Bavadekar, N.; Kulkarni, N.; Udyawar, R. Smart Cap: A Deep Learning and IoT Based Assistant for the Visually Impaired. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 1109–1116. [Google Scholar] [CrossRef]
- Akbari, Y.; Hassen, H.; Subramanian, N.; Kunhoth, J.; Al-Maadeed, S.; Alhajyaseen, W. A vision-based zebra crossing detection method for people with visual impairments. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 118–123. [Google Scholar] [CrossRef]
- Karkar, A.; Kunhoth, J.; Al-Maadeed, S. A Scene-to-Speech Mobile based Application: Multiple Trained Models Approach. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 490–497. [Google Scholar] [CrossRef]
ID | Question | Justification |
---|---|---|
QP1 | Which are the machine-learning models used in AIoT applied to Assistive Technology? | Identification of ML models used in AIoT applied to AT. |
QP2 | What are the topics of study that have been researched in the context of AIoT applied to Assistive Technology? | Providing context related to research topics. |
QP3 | What are the IoT devices used in the context of AIoT applied to Assistive Technology? | Providing context related to the types of IoT devices used. |
QP4 | Is there a disparity in the number of studies found according to the problems selected in the research? | Identify gaps for research and the development of solutions. |
Data Base | ID | Search String | URL |
---|---|---|---|
El Compendex | EIC | (“assistive technology” OR “impaired people”) AND (“AIoT” OR “IoT” OR “internet of things”) AND (“machine learning” OR “deep learning” OR “neural networks”) | http://www.engineeringvillage.com (accessed on 4 August 2022) |
IEEE Digital Library | IEEE | (“assistive technology" OR “impaired" OR “parkinson" OR “alzheimer") AND (“IoT" OR “AIoT" OR “Internet of Things" OR “artificial intelligence or things”) AND (“machine learning” OR “deep learning” OR “neural network”) | http://ieeexplore.ieee.org (accessed on 12 August 2022) |
ISI Web of Science | WOS | (“assistive technology” OR “impaired” OR “parkinson” OR “alzheimer”) AND (“iot” OR “aiot” OR “Internet of Things” OR “artificial intelligence or things”) AND (“machine learning” OR “deep learning” OR “neural network”) | http://www.isiknowledge.com (accessed on 6 August 2022) |
ScienceDirect | SCD | (“assistive technology”) AND (“IoT” OR “internet of things”) AND (“machine learning” OR “deep learning” OR “neural networks”) | http://www.sciencedirect.com (accessed on 10 August 2022) |
Scopus | SCPS | (“assistive technology” OR “impaired” OR “parkinson” OR “alzheimer”) AND (“iot” OR “aiot” OR “Internet of Things” OR “artificial intelligence or things”) AND (“machine learning” OR “deep learning” OR “neural network”) | http://www.scopus.com (accessed on 15 August 2022) |
Data Base | Number of Selected Articles |
---|---|
El Compendex | 37 |
IEEE Digital Library | 63 |
ISI Web of Science | 32 |
ScienceDirect | 67 |
Scopus | 68 |
Number of articles | 267 |
Number of duplicated articles | 79 |
Number of selected articles | 188 |
ID | Criteria | Applied Directly to the Databases |
---|---|---|
IC 1 | Studies published between 2017 and 2021 | EIC, IEEE, WOS, SCD, SCPS |
IC 2 | Peer-reviewed primary articles | EIC, WOS, SCD, SCPS |
IC 3 | Studies within the context of AIoT applied to AT, within the scope of deficiencies established | - |
IC 4 | Articles published in English | EIC, IEEE, WOS, SCPS |
ID | Criteria | Applied Directly to the Databases |
---|---|---|
EC 1 | Secondary or tertiary studies, studies within the context of AIoT applied to AT | - |
EC 2 | Studies within the context of AIoT applied to AT, within the scope of deficiencies established | - |
EC3 | Short articles, books, and gray literature (manuals, reports, theses, and dissertations) | EIC, WOS, SCD, SCPS |
EC 4 | Not having access to the study | - |
EC 5 | Duplicated study | - |
EC 6 | Redundant studies by the same author | - |
EC 7 | Studies prior to 2017 | EIC, IEEE, WOS, SCD, SCPS |
ID | Question |
---|---|
AQ 1 | Are the study objectives clearly defined? |
AQ 2 | Is the problem to be solved clearly described? |
AQ 3 | Do the authors describe in detail the use of the ML models used in the solution? |
AQ 4 | Did the study perform a well-described experiment to evaluate the proposal? |
AQ 5 | Do the findings of the study indicate a validity relevant to it? |
ID | Subject | Author | Score |
---|---|---|---|
A01 | Assistive Technology | Júnior et al. [81] | 4.0 |
A02 | Medicines Recognition | Chang et al. [82] | 3.5 |
A03 | Localized Assistive Scene | Ghazal et al. [83] | 4.5 |
A04 | Drug Pill Recognition | Chang et al. [84] | 5.0 |
A05 | Visually Impaired People | Rao and Singh [85] | 2.5 |
A06 | Visually Impaired Pedestrian | Chang et al. [86] | 4.5 |
A07 | Pattern Recognition | Bal et al. [87] | 3.0 |
A08 | Exploring Printed Text | Su et al. [88] | 5.0 |
A09 | Intelligent Navigation | Yadav et al. [89] | 5.0 |
A10 | Rehabilitation of People | Jacob et al. [13] | 5.0 |
A11 | Visually Impaired Users | Jiang et al. [90] | 3.0 |
A12 | Sign Language Recognition | Li et al. [91] | 2.5 |
A13 | Sign Language Recognition | Punsara et al. [92] | 2.5 |
A14 | Assistive Sign Language | Boppana et al. [93] | 5.0 |
A15 | Smart Wheelchair | Al Shabibi and Kesavan [94] | 4.0 |
A16 | Personal Assistant | Javed and Sarwar [95] | 5.0 |
A17 | Visual Aiding System | Kandoth et al. [96] | 3.5 |
A18 | Assistance of Patients | Sharma et al. [97] | 5.0 |
A19 | Parkinson’s Disease Assist | Baby et al. [98] | 3.0 |
A20 | Assistive Device | Wang et al. [99] | 3.5 |
A21 | Navigation System | Kumar et al. [100] | 3.0 |
A22 | Sign Language Interpretation | Lee et al. [101] | 5.0 |
A23 | Visual Assistive | Sreeraj et al. [102] | 4.0 |
A24 | Visual Assistant | Hengle et al. [103] | 5.0 |
A25 | Zebra Crossing Detection | Akbari et al. [104] | 5.0 |
A26 | Scene-to-Speech Mobile | Karkar et al. [105] | 4.5 |
ID | Field | Values | Objectives |
---|---|---|---|
PD 1 | ID | Incremental Numeric Value | Study Identification |
PD 2 | Title | Textual Value | Study Identification |
PD 3 | DOI | Textual Value | Study Location |
PD 4 | Machine-learning Model | Textual Value | Answer QP1 |
PD 5 | Topics | Textual Value | Answer QP2 |
PD 6 | Key Words | Textual Value | Answer QP2 |
PD 7 | IoT Device | Textual Value | Answer QP3 |
PD 8 | Addressed Issue | Multiple selection options: hearing impairment, cognitive, impairment, motor impairment, visual impairment, and degenerative disease | Answer QP4 |
Applied ML Models | Articles | Impairments |
---|---|---|
ANN | A1, A10, A13, A21 | Visual, motor coordination, hearing |
CNN | A6, A8, A9, A11, A12, A14, A24 | Visual, hearing, degenerative |
RNN | A18, A22 | Degenerative, auditory |
Multiple CNN | A25 | Visual |
Clever CNN | A5, A17 | Visual |
R-CNN | A3, A4 | Visual, elderly care |
Faster R-CNN | A2, A23 | Elderly care, visual |
PNN | A7 | Hearing |
Multi-trained DL models | A26 | Visual |
Linear regression | A29 | Degenerative |
SVM | A20, A24 | Motor coordination, visual |
Independent component analysis | A20 | Motor coordination |
Naïve Bayes | A16, A18 | Cognitive, degenerative |
Hoeffding tree | A16 | Cognitive |
Logistic regression | A16 | Cognitive |
Random forest | E16 | Cognitive |
K-means | E16 | Cognitive |
HOG | E25 | Visual |
Topics | Primary Articles |
---|---|
Scene to speech | A1, A3 |
Assisted navigation | A3, A5, A6, A9, A17, A21, A25 |
Sign recognition | A7, A12, A13, A14, A22 |
Object recognition | A2, A4, A9 |
Object detection | A11, A15, A23 |
Facial recognition | A21, A24 |
OCR | A7, A24 |
Assisted locomotion | A15 |
Speech recognition | A16 |
Text to speech | A24 |
Image captioning | A24 |
Text detection | A24 |
Smart assistant | A24 |
Human activity recognition | A16, A18 |
Rehabilitation | A10 |
Self-balancing object | A19 |
IoT Devices | Primary Articles |
---|---|
Portable device | A1, A2, A4, A5, A6, A7, A9, A13, A14, A17, A19, A23, A24 |
Wearable | A2, A4, A5, A6, A7, A11, A13, A20, A22, A24 |
Various sensors | A3, A9, A13, A15, A16, A18, A19, A21, A22 |
Smartphone | A3, A4, A5, A13, A16, A21, A26 |
Cane | A6, A17 |
Finger worn wireless | A8 |
Exoskeleton | A10 |
Wheelchair | A15 |
Other | A18 |
Non-defined | A12, A25 |
Board | Primary Articles |
---|---|
RaspberryPY | A1, A4, A5, A7, A9, A13, A14, A17, A23, A24 |
Arduino | A8, A15, A21, A23 |
Nvidia Jetson | A2, A4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, M.P.; Piai, V.A.; Farias, R.H.; Fernandes, A.M.R.; de Moraes Rossetto, A.G.; Leithardt, V.R.Q. Artificial Intelligence of Things Applied to Assistive Technology: A Systematic Literature Review. Sensors 2022, 22, 8531. https://doi.org/10.3390/s22218531
de Freitas MP, Piai VA, Farias RH, Fernandes AMR, de Moraes Rossetto AG, Leithardt VRQ. Artificial Intelligence of Things Applied to Assistive Technology: A Systematic Literature Review. Sensors. 2022; 22(21):8531. https://doi.org/10.3390/s22218531
Chicago/Turabian Stylede Freitas, Maurício Pasetto, Vinícius Aquino Piai, Ricardo Heffel Farias, Anita M. R. Fernandes, Anubis Graciela de Moraes Rossetto, and Valderi Reis Quietinho Leithardt. 2022. "Artificial Intelligence of Things Applied to Assistive Technology: A Systematic Literature Review" Sensors 22, no. 21: 8531. https://doi.org/10.3390/s22218531
APA Stylede Freitas, M. P., Piai, V. A., Farias, R. H., Fernandes, A. M. R., de Moraes Rossetto, A. G., & Leithardt, V. R. Q. (2022). Artificial Intelligence of Things Applied to Assistive Technology: A Systematic Literature Review. Sensors, 22(21), 8531. https://doi.org/10.3390/s22218531