Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield
Abstract
:1. Introduction
2. Literature Review
2.1. Background
- Industrialization Analytics
- Data Integration
- Collaborative Cross-functional
- Augmented Intelligence
2.1.1. Smart Farming
2.1.2. Unmanned Aerial Vehicle (UAV)
2.1.3. Artificial Intelligence (AI)
2.2. Related Work
3. Materials and Methods
3.1. Experimental Site and Imaging Devices
3.2. Rice Seedling Data Set
4. Experimental Evaluation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mizik, T. How can precision farming work on a small scale? A systematic literature review. Precis. Agric. 2022. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Mogili, U.R.; Deepak, B. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Hossain, M.; Fischer, K. Rice research for food security and sustainable agricultural development in Asia: Achievements and future challenges. GeoJournal 1995, 35, 286–298. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S.; Zhang, Z.; Li, Y.; Hu, Z.; Xin, D.; Chen, Q.; Wang, J.; Zhu, R. Automatic and accurate calculation of rice seed setting rate based on image segmentation and deep learning. Front. Plant Sci. 2021, 12, 2973. [Google Scholar] [CrossRef]
- Brovkina, O.; Cienciala, E.; Surový, P.; Janata, P. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spat. Inf. Sci. 2018, 21, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 2017, 20, 507–518. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Pidhirniak, O. Automatic Plant Counting Using Deep Neural Networks. 2019. Available online: http://www.er.ucu.edu.ua/bitstream/handle/1/1334/ (accessed on 22 October 2022).
- Sutcliffe, C.; Knox, J.; Hess, T. Managing irrigation under pressure: How supply chain demands and environmental objectives drive imbalance in agricultural resilience to water shortages. Agric. Water Manag. 2021, 243, 106484. [Google Scholar] [CrossRef]
- Hoosain, M.S.; Paul, B.S.; Ramakrishna, S. The impact of 4IR digital technologies and circular thinking on the United Nations sustainable development goals. Sustainability 2020, 12, 10143. [Google Scholar] [CrossRef]
- Alqarni, K.S.; Almalki, F.A.; Soufiene, B.O.; Ali, O.; Albalwy, F. Authenticated Wireless Links between a Drone and Sensors Using a Blockchain: Case of Smart Farming. Wirel. Commun. Mob. Comput. 2022, 2022, 4389729. [Google Scholar] [CrossRef]
- Almalki, F.A.; Soufiene, B.O.; Alsamhi, S.H.; Sakli, H. A low-cost platform for environmental smart farming monitoring system based on IoT and UAVs. Sustainability 2021, 13, 5908. [Google Scholar] [CrossRef]
- Almalki, F.A.; Angelides, M.C. Autonomous flying IoT: A synergy of machine learning, digital elevation, and 3D structure change detection. Comput. Commun. 2022, 190, 154–165. [Google Scholar] [CrossRef]
- Stafford, J.V. Precision Agriculture’19; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019. [Google Scholar]
- Vasisht, D.; Kapetanovic, Z.; Won, J.; Jin, X.; Chandra, R.; Sinha, S.; Kapoor, A.; Sudarshan, M.; Stratman, S. FarmBeats: An IoT Platform for Data-Driven Agriculture. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, 27–29 March 2017; pp. 515–529. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming–a review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Ray, P.P.; Skala, K. Internet of Things Aware Secure Dew Computing Architecture for Distributed Hotspot Network: A Conceptual Study. Appl. Sci. 2022, 12, 8963. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Z.; Liu, J.; Zhang, Z.; Zhang, X. The Development of Rubber Tapping Machines in Intelligent Agriculture: A Review. Appl. Sci. 2022, 12, 9304. [Google Scholar] [CrossRef]
- Alvino, A.; Marino, S. Remote sensing for irrigation of horticultural crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Dharmaraj, V.; Vijayanand, C. Artificial intelligence (AI) in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2122–2128. [Google Scholar] [CrossRef]
- Liu, S.Y. Artificial intelligence (AI) in agriculture, IT Professional; IEEE: Manhattan, NY, USA, 2020; pp. 14–15. [Google Scholar]
- Xu, R.; Li, C.; Paterson, A.H.; Jiang, Y.; Sun, S.; Robertson, J.S. Aerial images and convolutional neural network for cotton bloom detection. Front. Plant Sci. 2018, 8, 2235. [Google Scholar] [CrossRef] [Green Version]
- Valente, J.; Sari, B.; Kooistra, L.; Kramer, H.; Mücher, S. Automated crop plant counting from very high-resolution aerial imagery. Precis. Agric. 2020, 21, 1366–1384. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, J.; Gong, M.; Xie, H.; Goodman, E.D. Automatic tobacco plant detection in UAV images via deep neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 876–887. [Google Scholar] [CrossRef]
- Kitano, B.T.; Mendes, C.C.; Geus, A.R.; Oliveira, H.C.; Souza, J.R. Corn plant counting using deep learning and UAV images. IEEE Geosci. Remote Sens. Lett. 2019. [Google Scholar] [CrossRef]
- Chen, Y.; Ribera, J.; Boomsma, C.; Delp, E.J. Plant leaf segmentation for estimating phenotypic traits. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3884–3888. [Google Scholar]
- Neupane, B.; Horanont, T.; Hung, N.D. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLoS ONE 2019, 14, e0223906. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, C.; Paterson, A.H.; Robertson, J.S. DeepSeedling: Deep convolutional network and Kalman filter for plant seedling detection and counting in the field. Plant Methods 2019, 15, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes-Peñailillo, F.; Ortega-Farías, S.; de la Fuente-Sáiz, D.; Rivera, M. Digital count of sunflower plants at emergence from very low altitude using UAV images. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–5. [Google Scholar]
- Gnädinger, F.; Schmidhalter, U. Digital counts of maize plants by unmanned aerial vehicles (UAVs). Remote Sens. 2017, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Quirós, J.; Martello, M.; Khot, L. Field grown apple nursery tree plant counting based on small UAS imagery derived elevation maps. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Cenggoro, T.W.; Budiarto, A.; Rahutomo, R.; Pardamean, B. Information system design for deep learning-based plant counting automation. In Proceedings of the 2018 Indonesian Association for Pattern Recognition International Conference (INAPR), Tangerang, Indonesia, 7–8 September 2018; pp. 329–332. [Google Scholar]
- Ubbens, J.; Cieslak, M.; Prusinkiewicz, P.; Stavness, I. The use of plant models in deep learning: An application to leaf counting in rosette plants. Plant Methods 2018, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Luo, Y.; Xu, L.; Zhang, Q.; Cai, Q.; Shen, M. Deep Convolutional Neural Network for Rice Density Prescription Map at Ripening Stage Using Unmanned Aerial Vehicle-Based Remotely Sensed Images. Remote Sens. 2021, 14, 46. [Google Scholar] [CrossRef]
- Osco, L.P.; De Arruda, M.d.S.; Junior, J.M.; Da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Z.; Chen, S.; Liu, B.; Zheng, Z.; Zhong, Z.; Yang, Z.; Peng, H. Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method. Biosyst. Eng. 2020, 194, 261–272. [Google Scholar] [CrossRef]
- Ye, Z.; Wei, J.; Lin, Y.; Guo, Q.; Zhang, J.; Zhang, H.; Deng, H.; Yang, K. Extraction of Olive Crown Based on UAV Visible Images and the U2-Net Deep Learning Model. Remote Sens. 2022, 14, 1523. [Google Scholar] [CrossRef]
- What Is the Recommended Plant Population per Acre? Available online: https://aari.punjab.gov.pk (accessed on 22 October 2022).
Reference | Crop Type | Technique | Limitation |
---|---|---|---|
[35] | Rice | Yolo v4 | Low speed of target detection |
[36] | Citrus trees | CNN | Less efficient for the densely populated region |
[37] | Mango | Deep learning network | Less accurate |
[34] | Rosette plants | L-system modelling | Confused with other objects required more data |
[38] | Olive trees | U2 net- deep learning network | Complex model, error rate approx. 15% |
Proposed Work | Rice | ARC-GIS, deep learning | Require good quality image for better object detection |
Parameters | Specifications |
---|---|
UAV weight | 1388 g |
Max. flight time | 10 min (approx.) |
Battery | 5870 mAh LiPo 4S |
Flying altitude | 35 m |
Mission time | 80 min (approx.) |
Total flights | 8 |
Parameters | Specifications |
---|---|
Sensor | 1″ CMOS effective pixels |
Mechanical shutter speed | 8–1/2000 s |
Electronic shutter speed | 8–1/8000 s |
Photo | JPEG, DNG (raw) |
Agricultural Land | Region in Acres | Plantation Type | No. of Images |
---|---|---|---|
Region 1 | 35 | Mechanical and manual | 997 |
Region 2 | 5 | Mechanical | 203 |
Total | 40 | Mechanical and manual | 1200 |
Parameter | Value |
---|---|
Total Area | 5 acres |
Total Count | 120,292 * plants |
Mechanical Count | 39,367 * plants |
Manual Count | 80,926 * plants |
Total per Acre Count | 27,488 plants |
Mechanical per Acre Count | 29,823 plants |
Manual per Acre count | 26,466 plants |
Total Covered Area | 4.38 acres |
Mechanical Plantation | 1.32 acres |
Manual Plantation | 3.06 acres |
Parameter | Value |
---|---|
Total area | 35 acres |
Total count | 2,325,254 * plants |
Per acre count | 66,435 plants |
Reference | Technique | Efficiency |
---|---|---|
[34] | L-system modelling | 95.00% |
[35] | Yolo v4 | 98.84% |
[36] | CNN | 97.00% |
[37] | Deep learning network | 96.10% |
[38] | U2 net- deep learning network | 93.00% |
Proposed Work | ArcGIS, Deep Learning | 99.00% |
Technique | Study Area | Land Area | Experimental Count | Expected Count | Reason |
---|---|---|---|---|---|
UAV, Agisoft Metashape Professional software, ArcGIS, and Deep Learning | Rice | 40 Acres | 2,445,546 | 3,200,000 to 60,000,000 | Soil is loam and baren |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.I.; Alam, M.M.; Zia, M.Y.I.; Rashid, M.; Illahi, U.; Su’ud, M.M. Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield. Sensors 2022, 22, 8567. https://doi.org/10.3390/s22218567
Hassan SI, Alam MM, Zia MYI, Rashid M, Illahi U, Su’ud MM. Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield. Sensors. 2022; 22(21):8567. https://doi.org/10.3390/s22218567
Chicago/Turabian StyleHassan, Syeda Iqra, Muhammad Mansoor Alam, Muhammad Yousuf Irfan Zia, Muhammad Rashid, Usman Illahi, and Mazliham Mohd Su’ud. 2022. "Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield" Sensors 22, no. 21: 8567. https://doi.org/10.3390/s22218567
APA StyleHassan, S. I., Alam, M. M., Zia, M. Y. I., Rashid, M., Illahi, U., & Su’ud, M. M. (2022). Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield. Sensors, 22(21), 8567. https://doi.org/10.3390/s22218567