A Magnetic Sensor Based on the Nonlinear Effect of Co-Rich Amorphous Wire
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. DC Voltage Change with Applied DC Magnetic Field
3.2. DC Voltage Change with the Frequency of the Sine Wave Current
3.3. DC Voltage Change with the Amplitude of the Sine Wave Current
3.4. Magnetic Sensor Based on the Nonlinear Effect of the Wire
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gómez-Polo, C.; Vázquez, M. Structural relaxation and magnetic properties of Co-rich amorphous wire. J. Magn. Magn. Mater. 1993, 118, 86–92. [Google Scholar] [CrossRef]
- Zhukov, A.; Vázquez, M.; Velazquez, J.; Hernando, A.; Larin, V. Magnetic properties of Fe-based glass-coated microwires. J. Magn. Magn. Mater. 1997, 170, 323–330. [Google Scholar] [CrossRef]
- Vazquez, M.; Hernando, A. A soft magnetic wire for sensor applications. J. Phys. D Appl. Phys. 1996, 29, 939–949. [Google Scholar] [CrossRef]
- Chiriac, H.; Ovari, T.A. Amorphous glass-covered magnetic wires: Preparation, properties, applications. Prog. Mater. Sci. 1996, 40, 333–407. [Google Scholar] [CrossRef]
- Tannous, C.; Gieraltowski, J. Giant magneto-impedance and its applications. J. Mater. Sci. Mater. Electro. 2004, 15, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Panina, L.V.; Mohri, K.; Uchiyama, T.; Noda, M. Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 1995, 31, 1249–1260. [Google Scholar] [CrossRef]
- Chen, D.X.; Munoz, J.L.; Hernando, A.; Vazquez, M. Magnetoimpedance of metallic ferromagnetic wires. Phys. Rev. B 1998, 57, 10699–10704. [Google Scholar] [CrossRef]
- Yelon, A.; Menard, D.; Brittel, M.; Ciureanu, P. Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl. Phys. Lett. 1996, 69, 3084–3085. [Google Scholar] [CrossRef]
- Patton, C.E. Classical theory of spin-wave dispersion for ferromagnetic metals. Czechoslovak. J. Phys. 1976, 26, 925–935. [Google Scholar]
- Lofland, S.E.; Baghat, S.M.; Dominguez, M.; Garciabeneytez, J.M.; Guerrero, F.; Vazquez, M. Low-field microwave magnetoimpedance in amorphous microwires. J. Appl. Phys. 1999, 85, 4442–4444. [Google Scholar] [CrossRef]
- Panina, L.V.; Mohri, K. Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 1994, 65, 1189–1191. [Google Scholar] [CrossRef]
- Zhukov, A. (Ed.) High Performance Soft Magnetic Materials; Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2017; Volume 252, p. 216. ISBN 0933-033X. [Google Scholar] [CrossRef]
- Beach, R.; Berkowitz, A. Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 1994, 64, 3652–3654. [Google Scholar] [CrossRef]
- Vázquez, M.; Knobel, M.; Sánchez, M.L.; Valenzuela, R.; Zhukov, A.P. Giant magnetoimpedance effect in soft magnetic wires for sensor applications. Sens. Actuators A Phys. 1997, 59, 20–29. [Google Scholar] [CrossRef]
- Mohri, K. A Micro Magnetic Sensor Based on MI Effect. Japan Patent No. 3645116, 10 March 1999. [Google Scholar]
- Mohri, K.; Honkura, Y. Amorphous wire and CMOS IC based magneto-impedance sensors—Origin, topics, and future. Sens. Lett. 2007, 5, 267–270. [Google Scholar] [CrossRef]
- Honkura, Y.; Honkura, S. The Development of ASIC Type GSR Sensor Driven by GHz Pulse Current. Sensors 2020, 20, 1023. [Google Scholar] [CrossRef] [Green Version]
- Mohri, Y.; Uchiyama, T.; Yamada, M.; Mohri, K. Detection of back magneto-cardiogram for heart disease using pico-tesla resolution amorphous wire magneto-impedance sensor. In PIERS Proceedings; The Electromagnetics Academy: Cambridge, MA, USA, 2014; pp. 871–874. [Google Scholar]
- Ma, J.J.; Uchiyama, T. Alpha rhythm and visual event-related fields measurements at room temperature using magneto-impedance sensor system. IEEE Trans. Magn. 2019, 55, 4002706. [Google Scholar] [CrossRef]
- Goleman, K.; Sasada, I. High sensitive orthogonal fluxgate magnetometer using a metglas ribbon. IEEE Trans. Magn. 2006, 42, 3276–3278. [Google Scholar] [CrossRef]
- Butta, M.; Yamashita, S.; Sasada, I. Reduction of noise in fundamental mode orthogonal fluxgates by optimization of excitation current. IEEE Trans. Magn. 2011, 47, 3748–3751. [Google Scholar] [CrossRef]
- Butta, M.; Janosek, M.; Schutte, B.P.; Vazquez, M.; Perez, R.; Ramirez, E.C.; Jimenez, A. Effect of amorphous wire core diameter on the noise of an orthogonal fluxgate. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar]
- He, D.; Shiwa, M. A magnetic sensor with amorphous wire. Sensors 2014, 14, 10644–10649. [Google Scholar] [CrossRef]
- He, D. PT-level high-sensitivity magnetic sensor with amorphous wire. Sensors 2020, 20, 161. [Google Scholar] [CrossRef] [PubMed]
- He, D. Developing gradiometer to reduce the low frequency noise of magnetic sensor with amorphous wire. J. Electr. Electron. Eng. 2021, 9, 33–40. [Google Scholar] [CrossRef]
- Ohnaka, I.; Fukusako, T.; Matui, T. Preparation of amorphous wires. J. Jpn. Inst. Met. 1981, 45, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogasawara, I.; Ueno, S. Preparation and properties of amorphous wires. IEEE Trans. Magn. 1995, 31, 1219–1222. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Rahman, I.Z.; Rahman, M.A. A review on magneto-impedance effect in amorphous magnetic materials. J. Mater. Process. Technol. 2001, 119, 312–317. [Google Scholar] [CrossRef]
- Zhukova, V.; Ipatov, M.; Zhukov, A. Thin magnetically soft wires for magnetic microsensors. Sensors 2009, 9, 9216–9240. [Google Scholar] [CrossRef]
- Butta, M.; Schutte, B.P. Low-Noise Orthogonal Fluxgate Using Flipped Current Joule Annealing. IEEE Trans. Magn. 2019, 55, 8638829. [Google Scholar] [CrossRef]
- He, D.; Umemori, K.; Ueki, R.; Dohmae, T.; Okada, T.; Tachiki, M.; Ooi, S.; Watanabe, M. Low-temperature properties of the magnetic sensor with amorphous wire. Sensors 2020, 23, 6986. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D. A Magnetic Sensor Based on the Nonlinear Effect of Co-Rich Amorphous Wire. Sensors 2022, 22, 9117. https://doi.org/10.3390/s22239117
He D. A Magnetic Sensor Based on the Nonlinear Effect of Co-Rich Amorphous Wire. Sensors. 2022; 22(23):9117. https://doi.org/10.3390/s22239117
Chicago/Turabian StyleHe, Dongfeng. 2022. "A Magnetic Sensor Based on the Nonlinear Effect of Co-Rich Amorphous Wire" Sensors 22, no. 23: 9117. https://doi.org/10.3390/s22239117
APA StyleHe, D. (2022). A Magnetic Sensor Based on the Nonlinear Effect of Co-Rich Amorphous Wire. Sensors, 22(23), 9117. https://doi.org/10.3390/s22239117