Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan
Abstract
:1. Introduction
- Is it possible to decrease sensitivity or increase consistency?
- Is it possible to decrease computing time without decreasing accuracy?
2. Methods
2.1. Original PCA K-Means Algorithm
2.2. Other Difference Image Methods
2.3. Non-Local Means Denoising
2.4. Bilateral Filter
2.5. Guided Filter
2.6. Truncated Singular Value Decomposition
3. Experiments
3.1. Data
3.2. Configurations
3.3. Performance Metrics
- Percentage correct classifications:
- Kappa coefficient: , where
- Precision:
- Recall:
- F-measure:
3.4. Results
4. Discussion
4.1. Image-Based Results
4.2. Overall Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOI | Area of interest |
BF | Bilateral filter |
bs | Block size |
c | Number of clusters |
config. | Configuration |
CWNN | Convolutional-wavelet neural network |
DBN | Deep belief network |
DCNet | Deep cascade network |
dws | Denoising window size |
DWT | Discrete wavelet transform |
fmeas | F-measure |
FNLMF | Fast non-local mean filter |
FN | False negative |
FP | False positive |
g-DBN | Gamma deep belief network |
GaborFCM | Gabor fuzzy c-means |
GaborPCANet | Gabor PCA network |
GaborTLC | Gabor two-layer classifier |
GF | Guided filter |
GKSNet | Graph-based knowledge supplement network |
G-MAP | Gaussian model adaptive processing |
JDBN | Joint deep belief network |
KC | Kappa coefficient |
LR-CNN | Local restricted convolutional neural network |
MLFN | Multilevel fusion network |
MRFFCM | Markov random field fuzzy c-means |
NFM | Non-negative matrix factorization |
NLMD | Non-local means denoising |
NLMF | Non-local mean filter |
NLR | Nakagami log-ratio |
NR-ELM | Neighborhood-based ratio and extreme learning machine |
PCAKM | Principal component analysis and k-means clustering |
PCC | Percentage correct classifications |
PDE | Partial differential equation |
PREC | Precision |
SAR | Synthetic aperture radar |
sws | Search windows size |
TN | True negative |
TP | True positive |
TSVD | Truncated singular value decomposition |
tws | Template windows size |
VIM | Vegetation index map |
Appendix A
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 3 | 2 | 0.7684 | 8 | 2 | 0.6412 | 0.6935 | 0.0011 | 1.6953 | 1.4308 | 0.8440 |
3 | 2 | 0.8042 | 8 | 3 | 0.6989 | 0.7392 | 0.0008 | ||||
2 | 3 | 2 | 0.8933 | 2 | 3 | 0.3077 | 0.6739 | 0.0316 | 1.8004 | 1.3319 | 0.7398 |
3 | 2 | 0.9097 | 2 | 3 | 0.3832 | 0.7155 | 0.0259 | ||||
3 | 3 | 2 | 0.8961 | 2 | 3 | 0.3240 | 0.6912 | 0.0250 | 1.7985 | 1.3768 | 0.7655 |
3 | 2 | 0.9121 | 2 | 3 | 0.3986 | 0.7310 | 0.0204 | ||||
4 | 3 | 2 | 0.8320 | 7 | 3 | 0.4353 | 0.6553 | 0.0171 | 1.8234 | 1.3205 | 0.7242 |
3 | 2 | 0.8554 | 7 | 3 | 0.4940 | 0.6968 | 0.0145 | ||||
5 | 3 | 2 | 0.8997 | 2 | 3 | 0.2945 | 0.6526 | 0.0415 | 2.9328 | 1.2734 | 0.4342 |
3 | 2 | 0.9154 | 2 | 3 | 0.3663 | 0.6963 | 0.0340 | ||||
6 | 3 | 2 | 0.8997 | 7 | 2 | 0.0880 | 0.5656 | 0.0731 | 2.8794 | 1.0570 | 0.3671 |
3 | 2 | 0.9154 | 7 | 2 | 0.2279 | 0.6213 | 0.0568 | ||||
7 | 3 | 2 | 0.8984 | 2 | 3 | 0.3062 | 0.6914 | 0.0270 | 1.8112 | 1.3731 | 0.7581 |
3 | 2 | 0.9141 | 2 | 3 | 0.3800 | 0.7309 | 0.0222 | ||||
8 | 3 | 2 | 0.8933 | 2 | 3 | 0.3176 | 0.6745 | 0.0311 | 1.8143 | 1.3338 | 0.7352 |
3 | 2 | 0.9096 | 2 | 3 | 0.3919 | 0.7159 | 0.0255 | ||||
9 | 3 | 2 | 0.8321 | 7 | 3 | 0.4368 | 0.6454 | 0.0198 | 1.8124 | 1.2965 | 0.7153 |
3 | 2 | 0.8555 | 7 | 3 | 0.4955 | 0.6878 | 0.0169 | ||||
10 | 3 | 2 | 0.8341 | 8 | 3 | 0.4422 | 0.6692 | 0.0137 | 1.8295 | 1.3534 | 0.7398 |
3 | 2 | 0.8573 | 8 | 3 | 0.5024 | 0.7095 | 0.0116 | ||||
11 | 3 | 2 | 0.8379 | 8 | 3 | 0.5598 | 0.6896 | 0.0088 | 1.7403 | 1.4006 | 0.8048 |
3 | 2 | 0.8612 | 8 | 3 | 0.6073 | 0.7274 | 0.0076 | ||||
12 | 3 | 2 | 0.8351 | 8 | 3 | 0.5603 | 0.6896 | 0.0080 | 1.7555 | 1.4022 | 0.7987 |
3 | 2 | 0.8583 | 8 | 3 | 0.6077 | 0.7275 | 0.0069 | ||||
13 | 3 | 2 | 0.8355 | 2 | 3 | 0.4273 | 0.6782 | 0.0122 | 1.8816 | 1.3729 | 0.7296 |
3 | 2 | 0.8587 | 2 | 3 | 0.4878 | 0.7174 | 0.0105 | ||||
14 | 3 | 2 | 0.8321 | 7 | 3 | 0.4367 | 0.6556 | 0.0170 | 1.6853 | 1.3212 | 0.7840 |
3 | 2 | 0.8555 | 7 | 3 | 0.4953 | 0.6971 | 0.0145 | ||||
15 | 3 | 2 | 0.8558 | 2 | 3 | 0.3735 | 0.6624 | 0.0223 | 1.7328 | 1.3254 | 0.7649 |
3 | 2 | 0.8766 | 2 | 3 | 0.4397 | 0.7039 | 0.0186 | ||||
16 | 3 | 2 | 0.8567 | 2 | 3 | 0.3647 | 0.6739 | 0.0192 | 1.8836 | 1.3528 | 0.7182 |
3 | 2 | 0.8773 | 2 | 3 | 0.4310 | 0.7143 | 0.0162 | ||||
17 | 3 | 2 | 0.8558 | 2 | 3 | 0.3681 | 0.6621 | 0.0225 | 1.8266 | 1.3244 | 0.7251 |
3 | 2 | 0.8766 | 2 | 3 | 0.4350 | 0.7036 | 0.0188 | ||||
18 | 3 | 2 | 0.8479 | 2 | 3 | 0.4013 | 0.6609 | 0.0199 | 1.6252 | 1.3265 | 0.8162 |
3 | 2 | 0.8695 | 2 | 3 | 0.4642 | 0.7023 | 0.0168 | ||||
19 | 3 | 2 | 0.8481 | 2 | 3 | 0.3910 | 0.6714 | 0.0173 | 1.6587 | 1.3513 | 0.8147 |
3 | 2 | 0.8698 | 2 | 3 | 0.4545 | 0.7118 | 0.0146 | ||||
20 | 3 | 2 | 0.8479 | 2 | 3 | 0.4006 | 0.6608 | 0.0199 | 1.6872 | 1.3263 | 0.7861 |
3 | 2 | 0.8696 | 2 | 3 | 0.4636 | 0.7022 | 0.0168 | ||||
21 | 3 | 2 | 0.8850 | 8 | 3 | 0.7041 | 0.7970 | 0.0025 | 1.7493 | 1.6208 | 0.9265 |
3 | 2 | 0.9037 | 8 | 3 | 0.7458 | 0.8282 | 0.0019 | ||||
22 | 3 | 3 | 0.8899 | 8 | 3 | 0.7220 | 0.7985 | 0.0021 | 1.8765 | 1.6253 | 0.8661 |
3 | 3 | 0.9067 | 8 | 3 | 0.7627 | 0.8304 | 0.0015 |
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 3 | 3 | 0.4159 | 7 | 2 | −0.3118 | 0.0061 | 0.0856 | 1.5046 | 0.0808 | 0.0537 |
3 | 3 | 0.5293 | 8 | 3 | 0 | 0.2174 | 0.0571 | ||||
2 | 5 | 2 | 0.8183 | 8 | 3 | 0.3074 | 0.7049 | 0.0250 | 1.5639 | 1.4120 | 0.9029 |
5 | 2 | 0.8516 | 8 | 3 | 0.3989 | 0.7519 | 0.0198 | ||||
3 | 5 | 2 | 0.8183 | 8 | 3 | 0.3126 | 0.7080 | 0.0248 | 1.5519 | 1.4179 | 0.9137 |
5 | 2 | 0.8516 | 8 | 3 | 0.4031 | 0.7544 | 0.0197 | ||||
4 | 5 | 2 | 0.7638 | 2 | 3 | 0.4219 | 0.5940 | 0.0147 | 1.5725 | 1.2127 | 0.7712 |
7 | 2 | 0.8035 | 2 | 3 | 0.4759 | 0.6466 | 0.0132 | ||||
5 | 3 | 2 | 0.8261 | 6 | 3 | 0.2404 | 0.6821 | 0.0443 | 2.3293 | 1.3326 | 0.5721 |
3 | 2 | 0.8572 | 6 | 3 | 0.3318 | 0.7304 | 0.0356 | ||||
6 | 3 | 2 | 0.8259 | 6 | 3 | 0.2404 | 0.6824 | 0.0443 | 2.3099 | 1.3333 | 0.5772 |
3 | 2 | 0.8571 | 6 | 3 | 0.3318 | 0.7308 | 0.0356 | ||||
7 | 3 | 2 | 0.8390 | 8 | 3 | 0.2845 | 0.7280 | 0.0327 | 1.5973 | 1.4408 | 0.9020 |
3 | 2 | 0.8679 | 8 | 3 | 0.3776 | 0.7714 | 0.0259 | ||||
8 | 5 | 2 | 0.8183 | 8 | 3 | 0.3070 | 0.7051 | 0.0250 | 1.6022 | 1.4202 | 0.8864 |
5 | 2 | 0.8516 | 8 | 3 | 0.3986 | 0.7521 | 0.0120 | ||||
9 | 5 | 2 | 0.7638 | 2 | 3 | 0.4222 | 0.5927 | 0.0150 | 1.5987 | 1.2096 | 0.7566 |
7 | 2 | 0.8035 | 2 | 3 | 0.4762 | 0.6453 | 0.0134 | ||||
10 | 5 | 2 | 0.7656 | 8 | 3 | 0.4092 | 0.5892 | 0.0166 | 1.6074 | 1.2004 | 0.7468 |
7 | 2 | 0.8041 | 2 | 3 | 0.4832 | 0.6424 | 0.0146 | ||||
11 | 5 | 2 | 0.7629 | 6 | 3 | 0.4088 | 0.5831 | 0.0183 | 1.5654 | 1.1849 | 0.7569 |
7 | 2 | 0.8016 | 6 | 3 | 0.4776 | 0.6360 | 0.0159 | ||||
12 | 5 | 2 | 0.7633 | 2 | 3 | 0.4369 | 0.5957 | 0.0147 | 1.6521 | 1.2154 | 0.7357 |
7 | 2 | 0.8037 | 2 | 3 | 0.4904 | 0.6476 | 0.0132 | ||||
13 | 5 | 2 | 0.7639 | 8 | 3 | 0.4013 | 0.5898 | 0.0170 | 1.7313 | 1.2004 | 0.6934 |
7 | 2 | 0.8049 | 8 | 3 | 0.4776 | 0.6425 | 0.0149 | ||||
14 | 5 | 2 | 0.7638 | 2 | 3 | 0.4219 | 0.5931 | 0.0149 | 1.5611 | 1.2106 | 0.7755 |
7 | 2 | 0.8037 | 2 | 3 | 0.4759 | 0.6457 | 0.0133 | ||||
15 | 5 | 2 | 0.7755 | 6 | 3 | 0.3777 | 0.5926 | 0.0204 | 1.6121 | 1.2028 | 0.7461 |
5 | 2 | 0.8132 | 6 | 3 | 0.4527 | 0.6478 | 0.0172 | ||||
16 | 5 | 2 | 0.7775 | 6 | 3 | 0.3804 | 0.5944 | 0.0204 | 1.8577 | 1.2061 | 0.6492 |
5 | 2 | 0.8149 | 5 | 3 | 0.4542 | 0.6493 | 0.0172 | ||||
17 | 5 | 2 | 0.7755 | 6 | 3 | 0.3777 | 0.6014 | 0.0181 | 1.8254 | 1.2234 | 0.6702 |
5 | 2 | 0.8132 | 6 | 3 | 0.4527 | 0.6555 | 0.0154 | ||||
18 | 5 | 2 | 0.7698 | 5 | 3 | 0.4320 | 0.6067 | 0.0140 | 1.5299 | 1.2396 | 0.8102 |
7 | 2 | 0.8085 | 5 | 3 | 0.4973 | 0.6592 | 0.0123 | ||||
19 | 5 | 2 | 0.7721 | 5 | 3 | 0.4357 | 0.6089 | 0.0139 | 1.5428 | 1.2440 | 0.8063 |
5 | 2 | 0.8101 | 5 | 3 | 0.5001 | 0.6612 | 0.0122 | ||||
20 | 5 | 2 | 0.7698 | 6 | 3 | 0.3876 | 0.5979 | 0.0167 | 1.5619 | 1.2181 | 0.7799 |
7 | 2 | 0.8084 | 6 | 3 | 0.4610 | 0.6514 | 0.0145 | ||||
21 | 5 | 2 | 0.7599 | 8 | 3 | 0.3010 | 0.6401 | 0.0213 | 1.6163 | 1.3040 | 0.8068 |
7 | 2 | 0.8063 | 8 | 3 | 0.3995 | 0.7013 | 0.0161 | ||||
22 | 7 | 2 | 0.7470 | 2 | 2 | 0.4690 | 0.6762 | 0.0067 | 1.7252 | 1.4023 | 0.8128 |
7 | 2 | 0.7980 | 2 | 2 | 0.5907 | 0.7365 | 0.0037 |
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 4 | 3 | 0.1755 | 8 | 2 | 0.0753 | 0.1136 | 0.0014 | 2.0835 | 0.2417 | 0.1160 |
4 | 3 | 0.1906 | 8 | 2 | 0.0940 | 0.1308 | 0.0013 | ||||
2 | 2 | 3 | −0.0170 | 7 | 2 | −0.0211 | −0.0200 | 3.4239 | −0.0188 | −0.0055 | |
2 | 3 | 0.00358 | 7 | 2 | 0.0003 | 0.0012 | |||||
3 | 2 | 2 | −0.0186 | 7 | 2 | −0.0211 | −0.0201 | 3.0496 | −0.0191 | −0.0063 | |
2 | 2 | 0.00257 | 7 | 2 | 0.0003 | 0.0010 | |||||
4 | 8 | 3 | 0.8027 | 5 | 3 | 0.0308 | 0.4356 | 0.1224 | 3.4543 | 0.6418 | 0.1858 |
8 | 3 | 0.8047 | 5 | 3 | 0.0500 | 0.4456 | 0.1170 | ||||
5 | 7 | 3 | 0.7073 | 8 | 2 | −0.0206 | 0.2478 | 0.1006 | 3.9585 | 0.3123 | 0.0789 |
7 | 3 | 0.7111 | 8 | 2 | 0 | 0.2614 | 0.0963 | ||||
6 | 7 | 3 | 0.7100 | 8 | 2 | −0.0206 | 0.2488 | 0.1013 | 3.9399 | 0.3130 | 0.0794 |
7 | 3 | 0.7137 | 8 | 2 | 0 | 0.2624 | 0.0969 | ||||
7 | 7 | 3 | 0.6588 | 3 | 2 | −0.0212 | 0.1221 | 0.0746 | 3.2626 | 0.1158 | 0.0355 |
7 | 3 | 0.6635 | 2 | 3 | 0 | 0.1394 | 0.0711 | ||||
8 | 2 | 3 | −0.0169 | 7 | 2 | −0.0211 | −0.0200 | 3.2725 | −0.0189 | −0.0058 | |
2 | 3 | 0.0036 | 7 | 2 | 0.0003 | 0.0011 | |||||
9 | 8 | 3 | 0.8031 | 5 | 3 | 0.0362 | 0.4366 | 0.1216 | 3.1164 | 0.6454 | 0.2071 |
8 | 3 | 0.8050 | 5 | 3 | 0.0553 | 0.4466 | 0.1162 | ||||
10 | 6 | 2 | 0.8063 | 5 | 2 | 0.0770 | 0.4897 | 0.1047 | 3.1475 | 0.7834 | 0.2489 |
6 | 2 | 0.8083 | 5 | 2 | 0.0958 | 0.4985 | 0.1001 | ||||
11 | 6 | 2 | 0.8145 | 5 | 2 | 0.0786 | 0.5271 | 0.0942 | 2.6834 | 0.8778 | 0.3271 |
6 | 2 | 0.8164 | 5 | 2 | 0.0973 | 0.5349 | 0.0900 | ||||
12 | 6 | 2 | 0.8058 | 5 | 2 | 0.0742 | 0.4472 | 0.1144 | 2.8518 | 0.6803 | 0.2386 |
6 | 2 | 0.8078 | 5 | 2 | 0.0931 | 0.4569 | 0.1094 | ||||
13 | 6 | 2 | 0.8146 | 5 | 2 | 0.0843 | 0.5300 | 0.0922 | 3.0858 | 0.8875 | 0.2876 |
6 | 2 | 0.8165 | 5 | 2 | 0.1028 | 0.5378 | 0.0881 | ||||
14 | 8 | 3 | 0.8027 | 5 | 3 | 0.0328 | 0.4367 | 0.1216 | 2.7668 | 0.6456 | 0.2333 |
8 | 3 | 0.8047 | 5 | 3 | 0.0520 | 0.4467 | 0.1162 | ||||
15 | 6 | 2 | 0.8097 | 3 | 3 | 0.0340 | 0.3826 | 0.1418 | 2.9570 | 0.4994 | 0.1689 |
6 | 2 | 0.8117 | 3 | 3 | 0.0529 | 0.3941 | 0.1355 | ||||
16 | 6 | 2 | 0.8109 | 5 | 2 | 0.0604 | 0.4822 | 0.1284 | 3.0952 | 0.7225 | 0.2334 |
6 | 2 | 0.8129 | 5 | 2 | 0.0797 | 0.4913 | 0.1226 | ||||
17 | 6 | 2 | 0.8097 | 3 | 3 | 0.0326 | 0.3826 | 0.1318 | 3.378 | 0.5190 | 0.1708 |
6 | 2 | 0.8117 | 3 | 3 | 0.0516 | 0.3941 | 0.1259 | ||||
18 | 6 | 2 | 0.8099 | 3 | 3 | 0.0368 | 0.4311 | 0.1293 | 2.7983 | 0.6196 | 0.2214 |
6 | 2 | 0.8119 | 3 | 3 | 0.0555 | 0.4414 | 0.1236 | ||||
19 | 6 | 2 | 0.8113 | 5 | 2 | 0.0652 | 0.4832 | 0.1147 | 2.8843 | 0.7513 | 0.2605 |
6 | 2 | 0.8133 | 5 | 2 | 0.0843 | 0.4923 | 0.1095 | ||||
20 | 6 | 2 | 0.8099 | 3 | 3 | 0.0368 | 0.4328 | 0.1284 | 2.9458 | 0.6249 | 0.2121 |
6 | 2 | 0.8119 | 3 | 3 | 0.0555 | 0.4431 | 0.1226 | ||||
21 | 8 | 3 | 0.7953 | 2 | 2 | 0.0265 | 0.0929 | 0.0380 | 3.1092 | 0.1301 | 0.0418 |
8 | 3 | 0.7976 | 2 | 2 | 0.0468 | 0.1115 | 0.0363 | ||||
22 | 8 | 3 | 0.0563 | 2 | 3 | −0.0116 | 0.0337 | 0.0003 | 3.2598 | 0.0868 | 0.0266 |
8 | 3 | 0.0757 | 2 | 3 | 0.0091 | 0.0537 | 0.0003 |
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 7 | 3 | 0.3469 | 3 | 2 | 0.0926 | 0.2145 | 0.0085 | 2.6281 | 0.4567 | 0.1738 |
7 | 3 | 0.3790 | 3 | 2 | 0.1473 | 0.2577 | 0.0070 | ||||
2 | 5 | 3 | 0.3124 | 6 | 2 | −0.0100 | 0.1443 | 0.0236 | 2.7941 | 0.2837 | 0.1015 |
5 | 3 | 0.3224 | 6 | 2 | 0.0501 | 0.1796 | 0.0166 | ||||
3 | 5 | 3 | 0.3114 | 3 | 2 | −0.0105 | 0.1446 | 0.0237 | 2.7767 | 0.2840 | 0.1023 |
5 | 3 | 0.3213 | 3 | 2 | 0.0497 | 0.1798 | 0.0167 | ||||
4 | 5 | 2 | 0.7622 | 8 | 3 | 0.5946 | 0.6834 | 0.0023 | 2.8094 | 1.3713 | 0.4881 |
5 | 2 | 0.7697 | 8 | 3 | 0.6048 | 0.6925 | 0.0023 | ||||
5 | 5 | 3 | 0.3163 | 8 | 2 | 0.0018 | 0.1548 | 0.0230 | 4.0698 | 0.3041 | 0.0747 |
5 | 3 | 0.3256 | 8 | 2 | 0.0599 | 0.1886 | 0.0163 | ||||
6 | 3 | 3 | 0.3190 | 6 | 2 | 0.0014 | 0.1547 | 0.0231 | 4.0529 | 0.3038 | 0.0750 |
3 | 3 | 0.3292 | 6 | 2 | 0.0596 | 0.1886 | 0.0164 | ||||
7 | 3 | 3 | 0.3245 | 3 | 2 | −0.0066 | 0.1524 | 0.0250 | 2.5647 | 0.2966 | 0.1156 |
3 | 3 | 0.3345 | 3 | 2 | 0.0529 | 0.1870 | 0.0178 | ||||
8 | 5 | 3 | 0.3124 | 6 | 2 | −0.0104 | 0.1442 | 0.0236 | 2.6530 | 0.2835 | 0.1069 |
5 | 3 | 0.3224 | 5 | 2 | 0.0498 | 0.1795 | 0.0166 | ||||
9 | 5 | 2 | 0.7618 | 8 | 3 | 0.5946 | 0.6840 | 0.0023 | 2.6035 | 1.3724 | 0.5271 |
5 | 2 | 0.7693 | 8 | 3 | 0.6048 | 0.6930 | 0.0023 | ||||
10 | 5 | 2 | 0.7658 | 8 | 3 | 0.5831 | 0.6845 | 0.0027 | 2.6736 | 1.3726 | 0.5134 |
5 | 2 | 0.7731 | 8 | 3 | 0.5933 | 0.6934 | 0.0026 | ||||
11 | 5 | 2 | 0.7635 | 8 | 3 | 0.5294 | 0.6596 | 0.0057 | 2.5456 | 1.3169 | 0.5173 |
5 | 2 | 0.7708 | 8 | 3 | 0.5398 | 0.6686 | 0.0056 | ||||
12 | 5 | 2 | 0.7638 | 8 | 3 | 0.5879 | 0.6800 | 0.0028 | 2.7567 | 1.3634 | 0.4946 |
5 | 2 | 0.7712 | 8 | 3 | 0.5981 | 0.6890 | 0.0028 | ||||
13 | 5 | 2 | 0.7681 | 8 | 3 | 0.5601 | 0.6770 | 0.0037 | 3.0288 | 1.3556 | 0.4476 |
5 | 2 | 0.7754 | 8 | 3 | 0.5704 | 0.6860 | 0.0037 | ||||
14 | 5 | 2 | 0.7618 | 8 | 3 | 0.5946 | 0.6835 | 0.0024 | 2.6143 | 1.3713 | 0.5245 |
5 | 2 | 0.7693 | 8 | 3 | 0.6048 | 0.6925 | 0.0023 | ||||
15 | 5 | 2 | 0.7686 | 8 | 3 | 0.6731 | 0.7118 | 0.0008 | 2.6357 | 1.4310 | 0.5429 |
5 | 2 | 0.7763 | 8 | 3 | 0.6829 | 0.7208 | 0.0008 | ||||
16 | 5 | 2 | 0.7729 | 8 | 3 | 0.6743 | 0.7151 | 0.0008 | 2.6496 | 1.4375 | 0.5425 |
5 | 2 | 0.7804 | 8 | 3 | 0.6840 | 0.7240 | 0.0008 | ||||
17 | 5 | 2 | 0.7686 | 8 | 3 | 0.6728 | 0.7117 | 0.0008 | 2.6353 | 1.4308 | 0.5429 |
5 | 2 | 0.7763 | 8 | 3 | 0.6826 | 0.7207 | 0.0008 | ||||
18 | 5 | 2 | 0.7658 | 8 | 3 | 0.6538 | 0.7040 | 0.0010 | 2.4470 | 1.4150 | 0.5783 |
5 | 2 | 0.7733 | 8 | 3 | 0.6638 | 0.7130 | 0.0010 | ||||
19 | 5 | 2 | 0.7689 | 8 | 3 | 0.6459 | 0.7062 | 0.0011 | 2.4506 | 1.4191 | 0.5791 |
5 | 2 | 0.7763 | 8 | 3 | 0.6557 | 0.7151 | 0.0011 | ||||
20 | 5 | 2 | 0.7658 | 8 | 3 | 0.6538 | 0.7041 | 0.0010 | 2.5109 | 1.4152 | 0.5636 |
5 | 2 | 0.7733 | 8 | 3 | 0.6638 | 0.7131 | 0.0010 | ||||
21 | 7 | 3 | 0.7148 | 2 | 2 | 0.1612 | 0.4862 | 0.0342 | 2.6083 | 0.9339 | 0.3580 |
7 | 3 | 0.7255 | 2 | 2 | 0.2103 | 0.5115 | 0.0296 | ||||
22 | 7 | 3 | 0.6692 | 2 | 2 | 0.1264 | 0.4094 | 0.0386 | 2.6198 | 0.7777 | 0.2969 |
7 | 3 | 0.6825 | 2 | 2 | 0.1786 | 0.4402 | 0.0333 |
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 6 | 3 | 0.6450 | 2 | 2 | 0.2341 | 0.4396 | 0.0228 | 1.7555 | 0.8878 | 0.5057 |
6 | 3 | 0.6691 | 2 | 2 | 0.3094 | 0.4884 | 0.0174 | ||||
2 | 6 | 3 | 0.8563 | 8 | 2 | 0.6501 | 0.7611 | 0.0049 | 2.0176 | 1.5295 | 0.7581 |
6 | 3 | 0.8646 | 8 | 2 | 0.6771 | 0.7774 | 0.0041 | ||||
3 | 6 | 3 | 0.8558 | 8 | 2 | 0.6536 | 0.7660 | 0.0042 | 1.9845 | 1.5402 | 0.7761 |
6 | 3 | 0.8642 | 8 | 2 | 0.6803 | 0.7819 | 0.0035 | ||||
4 | 6 | 2 | 0.8431 | 7 | 3 | 0.5453 | 0.7442 | 0.0084 | 2.1660 | 1.4851 | 0.6856 |
6 | 2 | 0.8523 | 7 | 3 | 0.5649 | 0.7571 | 0.0078 | ||||
5 | 6 | 3 | 0.8677 | 8 | 2 | 0.6288 | 0.7745 | 0.0063 | 2.8495 | 1.5530 | 0.5450 |
6 | 3 | 0.8755 | 8 | 2 | 0.6580 | 0.7900 | 0.0052 | ||||
6 | 6 | 3 | 0.8676 | 8 | 2 | 0.6288 | 0.7744 | 0.0063 | 2.8352 | 1.5528 | 0.5477 |
6 | 3 | 0.8754 | 8 | 2 | 0.6580 | 0.7899 | 0.0052 | ||||
7 | 3 | 3 | 0.8681 | 8 | 2 | 0.6494 | 0.7741 | 0.0055 | 1.9147 | 1.5537 | 0.8115 |
3 | 3 | 0.8758 | 8 | 2 | 0.6766 | 0.7897 | 0.0046 | ||||
8 | 6 | 3 | 0.8564 | 8 | 2 | 0.6501 | 0.7610 | 0.0049 | 1.9416 | 1.5293 | 0.7876 |
6 | 3 | 0.8647 | 8 | 2 | 0.6771 | 0.7773 | 0.0041 | ||||
9 | 6 | 2 | 0.8433 | 7 | 3 | 0.5453 | 0.7442 | 0.0084 | 1.7349 | 1.4851 | 0.8560 |
6 | 2 | 0.8525 | 7 | 3 | 0.5649 | 0.7571 | 0.0078 | ||||
10 | 6 | 2 | 0.8445 | 7 | 3 | 0.5461 | 0.7453 | 0.0084 | 1.7355 | 1.4872 | 0.8569 |
6 | 2 | 0.8536 | 7 | 3 | 0.5656 | 0.7581 | 0.0078 | ||||
11 | 6 | 2 | 0.8415 | 7 | 3 | 0.5500 | 0.7455 | 0.0083 | 1.6289 | 1.4874 | 0.9131 |
6 | 2 | 0.8508 | 7 | 3 | 0.5691 | 0.7580 | 0.0078 | ||||
12 | 6 | 2 | 0.8431 | 8 | 3 | 0.5473 | 0.7444 | 0.0084 | 1.7001 | 1.4853 | 0.8737 |
6 | 2 | 0.8523 | 7 | 3 | 0.5674 | 0.7572 | 0.0079 | ||||
13 | 6 | 2 | 0.8441 | 7 | 3 | 0.5478 | 0.7493 | 0.0084 | 1.8793 | 1.4916 | 0.7937 |
6 | 2 | 0.8532 | 7 | 3 | 0.5673 | 0.7586 | 0.0079 | ||||
14 | 6 | 2 | 0.8433 | 7 | 3 | 0.5453 | 0.7438 | 0.0084 | 1.7351 | 1.4842 | 0.8554 |
6 | 2 | 0.8525 | 7 | 3 | 0.5649 | 0.7567 | 0.0079 | ||||
15 | 6 | 2 | 0.8456 | 7 | 3 | 0.5290 | 0.7528 | 0.0094 | 1.8070 | 1.5005 | 0.8304 |
6 | 2 | 0.8549 | 7 | 3 | 0.5513 | 0.7658 | 0.0087 | ||||
16 | 6 | 2 | 0.8461 | 8 | 3 | 0.5309 | 0.7539 | 0.0094 | 1.9894 | 1.5026 | 0.7553 |
6 | 2 | 0.8553 | 7 | 3 | 0.5522 | 0.7668 | 0.0087 | ||||
17 | 6 | 2 | 0.8456 | 7 | 3 | 0.5278 | 0.7527 | 0.0095 | 1.8993 | 1.5000 | 0.7898 |
6 | 2 | 0.8549 | 7 | 3 | 0.5491 | 0.7656 | 0.0088 | ||||
18 | 6 | 2 | 0.8440 | 8 | 3 | 0.5373 | 0.7504 | 0.0089 | 1.7354 | 1.4965 | 0.8623 |
6 | 2 | 0.8533 | 7 | 3 | 0.5582 | 0.7633 | 0.0083 | ||||
19 | 6 | 2 | 0.8448 | 7 | 3 | 0.5371 | 0.7510 | 0.0090 | 1.7527 | 1.4976 | 0.8545 |
6 | 2 | 0.8540 | 7 | 3 | 0.5575 | 0.7639 | 0.0083 | ||||
20 | 6 | 2 | 0.8438 | 8 | 3 | 0.5373 | 0.7503 | 0.0089 | 1.7641 | 1.4963 | 0.8482 |
6 | 2 | 0.8531 | 7 | 3 | 0.5582 | 0.7632 | 0.0083 | ||||
21 | 6 | 3 | 0.8431 | 2 | 2 | 0.3453 | 0.6858 | 0.0198 | 1.7682 | 1.3595 | 0.7689 |
6 | 3 | 0.8521 | 2 | 2 | 0.4061 | 0.7094 | 0.0159 | ||||
22 | 6 | 3 | 0.8335 | 2 | 2 | 0.2476 | 0.5938 | 0.0376 | 1.7717 | 1.1538 | 0.6512 |
6 | 3 | 0.8434 | 2 | 2 | 0.3216 | 0.6276 | 0.0300 |
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 8 | 3 | 0.7321 | 2 | 2 | 0.4188 | 0.5555 | 0.0145 | 1.1227 | 1.1278 | 1.0045 |
8 | 3 | 0.7530 | 2 | 2 | 0.4797 | 0.5977 | 0.0109 | ||||
2 | 5 | 3 | 0.9054 | 2 | 2 | 0.8226 | 0.8691 | 0.0005 | 1.2129 | 1.7472 | 1.4405 |
5 | 3 | 0.9122 | 2 | 2 | 0.8368 | 0.8790 | 0.0004 | ||||
3 | 3 | 3 | 0.9067 | 8 | 2 | 0.8566 | 0.8830 | 0.0002 | 1.1985 | 1.7502 | 1.4603 |
3 | 3 | 0.9133 | 8 | 2 | 0.8676 | 0.8676 | 0.0002 | ||||
4 | 5 | 2 | 0.8738 | 3 | 2 | −0.0680 | 0.3697 | 0.1452 | 1.3166 | 0.4931 | 0.3745 |
5 | 2 | 0.8825 | 3 | 2 | 0.0000 | 0.4017 | 0.1331 | ||||
5 | 2 | 3 | 0.9157 | 8 | 2 | 0.8580 | 0.8860 | 0.0003 | 1.8290 | 1.7800 | 0.9732 |
2 | 3 | 0.9219 | 8 | 2 | 0.8688 | 0.8946 | 0.0003 | ||||
6 | 3 | 3 | 0.9151 | 8 | 2 | 0.8592 | 0.8858 | 0.0003 | 1.8041 | 1.7797 | 0.9865 |
3 | 3 | 0.9213 | 8 | 2 | 0.8700 | 0.8944 | 0.0002 | ||||
7 | 3 | 3 | 0.9122 | 8 | 2 | 0.8594 | 0.8862 | 0.0002 | 1.1413 | 1.7804 | 1.5600 |
3 | 3 | 0.9185 | 8 | 2 | 0.8701 | 0.8946 | 0.0002 | ||||
8 | 5 | 3 | 0.9054 | 2 | 2 | 0.8226 | 0.8690 | 0.0005 | 1.1414 | 1.7471 | 1.5307 |
5 | 3 | 0.9122 | 2 | 2 | 0.8368 | 0.8790 | 0.0004 | ||||
9 | 5 | 2 | 0.8738 | 7 | 3 | 0.1974 | 0.5755 | 0.1032 | 1.1382 | 0.9809 | 0.8618 |
5 | 2 | 0.8825 | 7 | 3 | 0.2421 | 0.6008 | 0.0922 | ||||
10 | 5 | 2 | 0.8762 | 7 | 3 | 0.1983 | 0.5351 | 0.1064 | 1.1416 | 0.8962 | 0.7850 |
5 | 2 | 0.8848 | 7 | 3 | 0.2428 | 0.5626 | 0.0951 | ||||
11 | 3 | 2 | 0.8654 | 8 | 3 | 0.2306 | 0.5547 | 0.0934 | 1.0069 | 0.9522 | 0.9457 |
3 | 2 | 0.8744 | 7 | 3 | 0.2662 | 0.5768 | 0.0859 | ||||
12 | 5 | 2 | 0.8736 | 7 | 3 | 0.2128 | 0.5493 | 0.0974 | 1.1211 | 0.9360 | 0.8349 |
5 | 2 | 0.8822 | 7 | 3 | 0.2509 | 0.5729 | 0.0888 | ||||
13 | 5 | 2 | 0.8751 | 7 | 3 | 0.2137 | 0.5516 | 0.0967 | 1.2936 | 0.9417 | 0.7280 |
5 | 2 | 0.8836 | 7 | 3 | 0.2522 | 0.5750 | 0.0882 | ||||
14 | 5 | 2 | 0.8738 | 3 | 3 | 0.1973 | 0.5751 | 0.1030 | 1.0704 | 0.9804 | 0.9159 |
5 | 2 | 0.8825 | 7 | 3 | 0.2421 | 0.6004 | 0.0921 | ||||
15 | 7 | 3 | 0.8763 | 8 | 3 | 0.1782 | 0.8120 | 0.0311 | 1.0874 | 1.5780 | 1.4512 |
7 | 3 | 0.8849 | 8 | 3 | 0.2274 | 0.8247 | 0.0276 | ||||
16 | 5 | 2 | 0.8779 | 7 | 3 | 0.1630 | 0.7626 | 0.0585 | 1.1573 | 1.4302 | 1.2358 |
5 | 2 | 0.8865 | 7 | 3 | 0.2129 | 0.7781 | 0.0520 | ||||
17 | 7 | 3 | 0.8763 | 8 | 3 | 0.1782 | 0.8121 | 0.0311 | 1.1042 | 1.5782 | 1.4293 |
7 | 3 | 0.8849 | 8 | 3 | 0.2274 | 0.8248 | 0.0276 | ||||
18 | 5 | 2 | 0.8759 | 5 | 3 | 0.1700 | 0.6636 | 0.0930 | 1.0593 | 1.1724 | 1.1068 |
5 | 2 | 0.8846 | 5 | 3 | 0.2202 | 0.6846 | 0.0828 | ||||
19 | 5 | 2 | 0.8773 | 4 | 3 | 0.1713 | 0.6185 | 0.1060 | 1.0963 | 1.0603 | 0.9672 |
5 | 2 | 0.8859 | 7 | 3 | 0.2219 | 0.6421 | 0.0943 | ||||
20 | 5 | 2 | 0.8759 | 5 | 3 | 0.1700 | 0.6636 | 0.0930 | 1.1099 | 1.1724 | 1.0563 |
5 | 2 | 0.8846 | 5 | 3 | 0.2202 | 0.6846 | 0.0828 | ||||
21 | 7 | 3 | 0.8855 | 8 | 2 | −0.1361 | 0.3589 | 0.2442 | 1.1173 | 0.3651 | 0.3268 |
7 | 3 | 0.8937 | 2 | 2 | 0.0034 | 0.4348 | 0.1844 | ||||
22 | 7 | 3 | 0.8840 | 8 | 2 | −0.1355 | 0.3561 | 0.2409 | 1.1223 | 0.3651 | 0.3253 |
7 | 3 | 0.8923 | 2 | 2 | 0.0032 | 0.4320 | 0.1821 |
Best Results | Worst Results | Mean | Var. | Avg. Time | U1 | U2 | |||||
No | bs | c | kc | bs | c | kc | kc | kc | |||
fmeas | fmeas | fmeas | fmeas | ||||||||
1 | 5 | 3 | 0.7359 | 2 | 2 | 0.1204 | 0.4966 | 0.0415 | 1.8599 | 0.9222 | 0.4958 |
5 | 3 | 0.7398 | 2 | 2 | 0.1412 | 0.5064 | 0.0393 | ||||
2 | 3 | 2 | 0.8292 | 6 | 3 | 0.5664 | 0.7014 | 0.0076 | 1.9276 | 1.3906 | 0.7214 |
3 | 2 | 0.8312 | 6 | 3 | 0.5697 | 0.7044 | 0.0076 | ||||
3 | 3 | 2 | 0.8287 | 4 | 3 | 0.5695 | 0.7026 | 0.0076 | 1.8519 | 1.3930 | 0.7522 |
3 | 2 | 0.8306 | 4 | 3 | 0.5728 | 0.7056 | 0.0076 | ||||
4 | 5 | 2 | 0.7763 | 2 | 3 | 0.4559 | 0.6300 | 0.0123 | 1.9566 | 1.2385 | 0.6330 |
5 | 2 | 0.7788 | 2 | 3 | 0.4591 | 0.6331 | 0.0123 | ||||
5 | 3 | 2 | 0.8398 | 8 | 3 | 0.5763 | 0.7256 | 0.0060 | 2.7281 | 1.4421 | 0.5286 |
3 | 2 | 0.8417 | 8 | 3 | 0.5797 | 0.7285 | 0.0060 | ||||
6 | 3 | 2 | 0.8398 | 8 | 3 | 0.5771 | 0.7250 | 0.0061 | 2.6568 | 1.4409 | 0.5423 |
3 | 2 | 0.8417 | 8 | 3 | 0.5805 | 0.7280 | 0.0060 | ||||
7 | 3 | 2 | 0.8509 | 8 | 3 | 0.5936 | 0.7333 | 0.0065 | 1.5951 | 1.4566 | 0.9132 |
3 | 2 | 0.8527 | 8 | 3 | 0.5970 | 0.7362 | 0.0064 | ||||
8 | 3 | 2 | 0.8292 | 6 | 3 | 0.5656 | 0.7018 | 0.0076 | 1.8600 | 1.3914 | 0.7481 |
3 | 2 | 0.8312 | 6 | 3 | 0.5688 | 0.7048 | 0.0076 | ||||
9 | 5 | 2 | 0.7763 | 2 | 3 | 0.4559 | 0.6301 | 0.0124 | 1.6901 | 1.2386 | 0.7329 |
5 | 2 | 0.7788 | 2 | 3 | 0.4591 | 0.6332 | 0.0123 | ||||
10 | 5 | 2 | 0.7771 | 2 | 3 | 0.4650 | 0.6317 | 0.0120 | 1.7489 | 1.2425 | 0.7104 |
5 | 2 | 0.7796 | 2 | 3 | 0.4683 | 0.6348 | 0.0120 | ||||
11 | 7 | 2 | 0.7669 | 2 | 3 | 0.5362 | 0.6386 | 0.0072 | 1.4803 | 1.2659 | 0.8552 |
7 | 2 | 0.7701 | 2 | 3 | 0.5394 | 0.6417 | 0.0072 | ||||
12 | 3 | 2 | 0.7732 | 2 | 3 | 0.4487 | 0.6286 | 0.0124 | 1.5298 | 1.2357 | 0.8078 |
3 | 2 | 0.7755 | 2 | 3 | 0.4519 | 0.6318 | 0.0123 | ||||
13 | 5 | 2 | 0.7765 | 2 | 3 | 0.4657 | 0.6330 | 0.0117 | 1.6798 | 1.2458 | 0.7416 |
5 | 2 | 0.7790 | 2 | 3 | 0.4690 | 0.6361 | 0.0116 | ||||
14 | 5 | 2 | 0.7763 | 2 | 3 | 0.4559 | 0.6300 | 0.0124 | 1.5257 | 1.2384 | 0.8117 |
5 | 2 | 0.7788 | 2 | 3 | 0.4591 | 0.6331 | 0.0123 | ||||
15 | 3 | 2 | 0.8140 | 2 | 3 | 0.5152 | 0.6557 | 0.0105 | 1.5926 | 1.2935 | 0.8122 |
3 | 2 | 0.8161 | 2 | 3 | 0.5185 | 0.6588 | 0.0105 | ||||
16 | 3 | 2 | 0.8186 | 2 | 3 | 0.5274 | 0.6585 | 0.0104 | 1.6196 | 1.2993 | 0.8022 |
3 | 2 | 0.8206 | 2 | 3 | 0.5306 | 0.6616 | 0.0104 | ||||
17 | 3 | 2 | 0.8140 | 2 | 3 | 0.5152 | 0.6559 | 0.0105 | 1.6165 | 1.2940 | 0.8005 |
3 | 2 | 0.8161 | 2 | 3 | 0.5185 | 0.6590 | 0.0104 | ||||
18 | 5 | 2 | 0.7905 | 2 | 3 | 0.4890 | 0.6444 | 0.0110 | 1.6152 | 1.2699 | 0.7862 |
5 | 2 | 0.7929 | 2 | 3 | 0.4922 | 0.6475 | 0.0110 | ||||
19 | 3 | 2 | 0.7940 | 2 | 3 | 0.5086 | 0.6476 | 0.0107 | 1.6412 | 1.2770 | 0.7781 |
3 | 2 | 0.7962 | 2 | 3 | 0.5118 | 0.6507 | 0.0106 | ||||
20 | 5 | 2 | 0.7905 | 2 | 3 | 0.4890 | 0.6444 | 0.0110 | 1.6568 | 1.2699 | 0.7665 |
5 | 2 | 0.7929 | 2 | 3 | 0.4922 | 0.6475 | 0.0110 | ||||
21 | 3 | 3 | 0.8034 | 2 | 2 | 0.1268 | 0.6069 | 0.0394 | 1.8668 | 1.1443 | 0.6130 |
3 | 3 | 0.8062 | 2 | 2 | 0.1473 | 0.6141 | 0.0373 | ||||
22 | 5 | 3 | 0.7615 | 2 | 2 | 0.0864 | 0.4757 | 0.0566 | 2.0952 | 0.8518 | 0.4065 |
5 | 3 | 0.7650 | 2 | 2 | 0.1084 | 0.4863 | 0.0536 |
Appendix B
References
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image Change Detection Algorithms: A Systematic Survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef]
- Salah, H.S.; Goldin, S.E.; Rezgui, A.; Nour El Islam, B.; Ait-Aoudia, S. What is a remote sensing change detection technique? Towards a conceptual framework. Int. J. Remote Sens. 2020, 41, 1788–1812. [Google Scholar] [CrossRef]
- Vasegaard, A.; Picard, M.; Hennart, F.; Nielsen, P.; Saha, S. Multi criteria decision making for the multi-satellite image acquisition scheduling problem. Sensors 2020, 20, 1242. [Google Scholar] [CrossRef] [Green Version]
- Vasegaard, A.; Moon, I.; Nielsen, P.; Saha, S. Determining the pricing strategy for different preference structures for the earth observation satellite scheduling problem through simulation and VIKOR. Flex. Serv. Manuf. J. 2022, 1–29. [Google Scholar] [CrossRef]
- Pedersen, C.; Nielsen, K.; Rosenkrands, K.; Vasegaard, A.; Nielsen, P.; El Yafrani, M. A grasp-based approach for planning uav-assisted search and rescue missions. Sensors 2022, 22, 275. [Google Scholar] [CrossRef] [PubMed]
- Danancier, K.; Ruvio, D.; Sung, I.; Nielsen, P. Comparison of path planning algorithms for an unmanned aerial vehicle deployment under threats. IFAC—PapersOnLine 2019, 52, 1978–1983. [Google Scholar] [CrossRef]
- Palm, B.G.; Alves, D.I.; Pettersson, M.I.; Vu, V.T.; Machado, R.; Cintra, R.J.; Bayer, F.M.; Dammert, P.; Hellsten, H. Wavelength-Resolution SAR Ground Scene Prediction Based on Image Stack. Sensors 2020, 20, 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, Y.; Wang, B.; Xiang, M.; Wang, R.; Xu, W.; Song, C. Multi-Frequency Interferometric Coherence Characteristics Analysis of Typical Objects for Coherent Change Detection. Remote Sens. 2022, 14, 1689. [Google Scholar] [CrossRef]
- Bovenga, F. Special Issue “Synthetic Aperture Radar (SAR) Techniques and Applications”. Sensors 2020, 20, 1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Ni, W.; Yan, W.; Bian, H.; Wu, J. Fast SAR Image Change Detection Using Bayesian Approach Based Difference Image and Modified Statistical Region Merging. Sci. World J. 2014, 2014, 862875. [Google Scholar] [CrossRef]
- Kang, M.; Baek, J. SAR Image Change Detection via Multiple-Window Processing with Structural Similarity. Sensors 2021, 21, 6645. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, Z. Change Detection in Synthetic Aperture Radar Images Based on a Generalized Gamma Deep Belief Networks. Sensors 2021, 21, 8290. [Google Scholar] [CrossRef]
- Gao, F.; Liu, X.; Dong, J.; Zhong, G.; Jian, M. Change Detection in SAR Images Based on Deep Semi-NMF and SVD Networks. Remote Sens. 2017, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ye, Q.; Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Inf. Fusion 2022, 77, 29–52. [Google Scholar] [CrossRef]
- Alicioglu, G.; Sun, B. A survey of visual analytics for Explainable Artificial Intelligence methods. Comput. Graph. 2022, 102, 502–520. [Google Scholar] [CrossRef]
- Rojat, T.; Puget, R.; Filliat, D.; Del Ser, J.; Gelin, R.; Díaz-Rodríguez, N. Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey. arXiv 2021, arXiv:2104.00950. [Google Scholar] [CrossRef]
- Li, B.; Qi, P.; Liu, B.; Di, S.; Liu, J.; Pei, J.; Yi, J.; Zhou, B. Trustworthy AI: From Principles to Practices. arXiv 2021, arXiv:2110.01167. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Çelik, T. Bayesian change detection based on spatial sampling and Gaussian mixture model. Pattern Recognit. Lett. 2011, 32, 1635–1642. [Google Scholar] [CrossRef]
- Li, H.C.; Celik, T.; Longbotham, N.; Emery, W.J. Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2458–2462. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dong, J.; Zhang, S.; Du, Q. Change Detection From Synthetic Aperture Radar Images via Graph-Based Knowledge Supplement Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1823–1836. [Google Scholar] [CrossRef]
- Li, L.; Ma, H.; Jia, Z. Change Detection from SAR Images Based on Convolutional Neural Networks Guided by Saliency Enhancement. Remote Sens. 2021, 13, 3697. [Google Scholar] [CrossRef]
- Painam, R.K.; Manikandan, S. A comprehensive review of SAR image filtering techniques: Systematic survey and future directions. Arab. J. Geosci. 2021, 14, 37. [Google Scholar] [CrossRef]
- Qiu, F.; Berglund, J.; Jensen, J.R.; Thakkar, P.; Ren, D. Speckle Noise Reduction in SAR Imagery Using a Local Adaptive Median Filter. GIScience Remote Sens. 2004, 41, 244–266. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Jeong, J. Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform. Remote Sens. 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Peng, G.H.; Yan, W.d.; Pan, L.L.; Wang, L.Y. Change detection in SAR images based on superpixel segmentation and image regression. Earth Sci. Inform. 2021, 14, 69–79. [Google Scholar] [CrossRef]
- Ilsever, M.; Ünsalan, C. Two-Dimensional Change Detection Methods; Springer: London, UK, 2012. [Google Scholar] [CrossRef]
- Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. Estimation of the Equivalent Number of Looks in Polarimetric SAR Imagery. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; Volume 4, pp. 487–490. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Southampton, UK, 2004. [Google Scholar]
- Zhuang, H.; Tan, Z.; Deng, K.; Fan, H. It is a misunderstanding that log ratio outperforms ratio in change detection of SAR images. Eur. J. Remote Sens. 2019, 52, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Baudes, A.; Coll, B.; Morel, J.M. Non-Local Means Denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J. Fast Guided Filter. arXiv 2015, arXiv:1505.00996. [Google Scholar] [CrossRef]
- Immerkær, J. Fast Noise Variance Estimation. Comput. Vis. Image Underst. 1996, 64, 300–302. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, Z.; Yang, J.; Kasabov, N. Change detection in SAR images based on the logarithmic transformation and total variation denoising method. Remote Sens. Lett. 2017, 8, 214–223. [Google Scholar] [CrossRef]
- Song, Y.; Cai, X.; Zhou, X.; Zhang, B.; Chen, H.; Li, Y.; Deng, W.; Deng, W. Dynamic hybrid mechanism-based differential evolution algorithm and its application. Expert Syst. Appl. 2023, 213, 118834. [Google Scholar] [CrossRef]
- Ren, Z.; Han, X.; Yu, X.; Skjetne, R.; Leira, B.J.; Sævik, S.; Zhu, M. Data-driven simultaneous identification of the 6DOF dynamic model and wave load for a ship in waves. Mech. Syst. Signal Process. 2023, 184, 109422. [Google Scholar] [CrossRef]
- Barbosa, B.D.S.; Ferraz, G.A.S.; Gonçalves, L.M.; Marin, D.B.; Maciel, D.T.; Ferraz, P.F.P.; Rossi, G. RGB vegetation indices applied to grass monitoring: A qualitative analysis. Agron. Res. 2019, 17, 349–357. [Google Scholar] [CrossRef]
- Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A Hyperspectral Image Classification Method Using Multifeature Vectors and Optimized KELM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [Google Scholar] [CrossRef]
Image 1 Date | Image 2 Date | Satellite | Resolution | |
Ottawa (Canada) [13] | May 1997 | August 1997 | RADARSAT | 290 × 350 pixels |
Yellow River Estuary 1 (China) [35] | June 2008 | June 2009 | RADARSAT-2 | 257 × 289 pixels |
Yellow River Estuary 2 (China) [35] | June 2008 | June 2009 | RADARSAT-2 | 450 × 280 pixels |
Yellow River Estuary 3 (China) [35] | June 2008 | June 2009 | RADARSAT-2 | 291 × 444 pixels |
Yellow River Estuary 4 (China) [35] | June 2008 | June 2009 | RADARSAT-2 | 306 × 291 pixels |
San Francisco (USA) [13] | August 2003 | May 2004 | ERS-2 | 256 × 256 pixels |
Bern (Switzerland) [36] | April 1999 | May 1999 | ERS-2 | 301 × 301 pixels |
Noise Variance Value | ||
Image 1 | Image 2 | |
Ottawa | 11.5067 | 9.0350 |
Yellow River Estuary 1 | 18.6691 | 37.6355 |
Yellow River Estuary 2 | 6.0765 | 12.5834 |
Yellow River Estuary 3 | 9.9969 | 26.2616 |
Yellow River Estuary 4 | 15.5373 | 32.9121 |
San Francisco | 2.6013 | 2.8143 |
Bern | 8.2991 | 7.0199 |
No | Configuration before PCAKM | No | Configuration before PCAKM |
1 | 12 | + TSVD(var = 0.9) | |
2 | 13 | GF(r = bs, = 0.0001) + + TSVD(var = 0.9) | |
3 | + TSVD(var = 0.9) | 14 | |
4 | GF(r = bs, = 0) + | 15 | |
5 | NLMD(h = 20, tws = 7, sws = 21) + | 16 | GF(r = bs, = 0.0001) + |
6 | NLMD(h = 20, tws = 7, sws = 21) + GF(r = bs, = 0) + | 17 | |
7 | BF(dws = 10) + | 18 | |
8 | 19 | GF(r = bs, = 0.0001) + | |
9 | 20 | ||
10 | GF(r = bs, = 0.0001) + | 21 | |
11 | + TSVD(var = 0.8) | 22 |
Calculated Change Map | |||
Pixel | Positive (changed) | Negative (unchanged) | |
Ground Truth Image | Positive (changed) | True Positive | False negative (Type II Error) |
Negative (unchanged) | False positive (Type I Error) | True negative |
U1 | U2 | |
Ottawa | 22,21,1,12,11,3,7,13,10,16,19, 8,2,18,20,15,17,14,4,9,5,6 | 21,22,1,18,19,11,12,20,14,3,15, 7,2,10,8,13,17,4,16,9,5,6 |
Yellow River Estuary 1 | 7,8,3,2,22,6,5,21,19,18,17, 20,12,4,14,9,16,15,13,10,11,1 | 3,2,7,8,22,18,21,19,20,14,4, 11,9,10,15,12,13,17,16,6,5,1 |
Yellow River Estuary 2 | 13,11,10,19,16,12,14,9,4,20,18, 17,15,6,5,1,21,7,22,2,8,3 | 11,13,19,10,12,16,14,18,20,9,4, 17,15,1,6,5,21,7,22,2,8,3 |
Yellow River Estuary 3 | 16,15,17,19,20,18,10,9,4,14, 12,13,11,21,22,1,5,6,7,3,2,8 | 19,18,20,17,15,16,9,14,11,10,12, 4,13,21,22,1,7,8,3,2,6,5 |
Yellow River Estuary 4 | 7,5,6,3,2,8,16,15,17,19,18, 20,13,11,10,12,4,9,14,21,22,1 | 11,12,18,10,9,14,19,20,15,7,13, 17,8,3,21,2,16,4,22,6,5,1 |
San Francisco | 7,5,6,3,2,8,17,15,16,18,20, 1,19,9,14,11,13,12,10,4,21,22 | 7,8,3,15,2,17,16,18,20,1,6, 5,19,11,14,9,12,10,13,4,21,22 |
Bern | 7,5,6,3,8,2,16,17,15,19,18, 20,11,13,10,9,4,14,12,21,1,22 | 7,11,15,14,12,16,17,18,19,20,3, 8,13,9,2,10,4,21,6,5,1,22 |
kc | fmeas | Avg. Time | U3 | U4 | |||
No | Mean | Variance | Mean | Variance | |||
1 | 0.3599 | 0.0251 | 0.4197 | 0.0191 | 1.8071 | 0.7354 | 0.4070 |
2 | 0.5478 | 0.0133 | 0.5727 | 0.0106 | 2.1058 | 1.0966 | 0.5207 |
3 | 0.5536 | 0.0122 | 0.5779 | 0.0097 | 2.0302 | 1.1096 | 0.5465 |
4 | 0.5875 | 0.0461 | 0.6105 | 0.0429 | 2.1570 | 1.1091 | 0.5142 |
5 | 0.5981 | 0.0317 | 0.6128 | 0.0277 | 2.9567 | 1.1515 | 0.3895 |
6 | 0.5767 | 0.0364 | 0.6022 | 0.0310 | 2.9255 | 1.1115 | 0.3800 |
7 | 0.5839 | 0.0245 | 0.6071 | 0.0212 | 1.9838 | 1.1453 | 0.5773 |
8 | 0.5479 | 0.0132 | 0.5728 | 0.0095 | 2.0407 | 1.0980 | 0.5380 |
9 | 0.6155 | 0.0404 | 0.6377 | 0.0373 | 1.9563 | 1.1755 | 0.6009 |
10 | 0.6207 | 0.0378 | 0.6428 | 0.0348 | 1.9834 | 1.1909 | 0.6004 |
11 | 0.6283 | 0.0337 | 0.6491 | 0.0314 | 1.8073 | 1.2123 | 0.6708 |
12 | 0.6193 | 0.0369 | 0.6404 | 0.0345 | 1.9096 | 1.1884 | 0.6223 |
13 | 0.6294 | 0.0346 | 0.6505 | 0.0321 | 2.0829 | 1.2132 | 0.5825 |
14 | 0.6168 | 0.0400 | 0.6389 | 0.0369 | 1.8512 | 1.1788 | 0.6368 |
15 | 0.6529 | 0.0338 | 0.6737 | 0.0313 | 1.9178 | 1.2616 | 0.6578 |
16 | 0.6630 | 0.0353 | 0.6837 | 0.0326 | 2.0361 | 1.2788 | 0.6281 |
17 | 0.6541 | 0.0320 | 0.6748 | 0.0297 | 1.9922 | 1.2672 | 0.6361 |
18 | 0.6373 | 0.0396 | 0.6588 | 0.0365 | 1.8300 | 1.2200 | 0.6666 |
19 | 0.6410 | 0.0390 | 0.6624 | 0.0358 | 1.8609 | 1.2286 | 0.6602 |
20 | 0.6363 | 0.0398 | 0.6579 | 0.0367 | 1.8909 | 1.2176 | 0.6439 |
21 | 0.5240 | 0.0571 | 0.5587 | 0.0459 | 1.9765 | 0.9797 | 0.4957 |
22 | 0.4777 | 0.0547 | 0.5152 | 0.0435 | 2.0672 | 0.8947 | 0.4328 |
U3 | U4 | |
Overall Results | 16,17,15,19,18,20,13,11,10,12, 14,9,5,7,6,3,4,8,2,21,22,1 | 11,18,19,15,20,14,17,16,12,9, 10,13,7,3,8,2,4,21,22,1,5,6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kılıç, D.K.; Nielsen, P. Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan. Sensors 2022, 22, 9172. https://doi.org/10.3390/s22239172
Kılıç DK, Nielsen P. Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan. Sensors. 2022; 22(23):9172. https://doi.org/10.3390/s22239172
Chicago/Turabian StyleKılıç, Deniz Kenan, and Peter Nielsen. 2022. "Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan" Sensors 22, no. 23: 9172. https://doi.org/10.3390/s22239172
APA StyleKılıç, D. K., & Nielsen, P. (2022). Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan. Sensors, 22(23), 9172. https://doi.org/10.3390/s22239172