Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase-Contrast Microscopy
2.2. Fresh Histological Samples
2.3. Advanced Phase-Contrast Parameters
2.4. Statistical Analysis
2.5. Classification Algorithms
3. Results
3.1. Phase-Contrast Microscopy Images
3.2. Phase-Contrast Parameters
3.3. ANOVA Statistical Analysis
3.4. Classification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tortora, G.J.; Derrickson, B.H. Tortora’s Principles of Anatomy & Physiology; Global Edition; Wiley: Hoboken, NJ, USA, 2017; ISBN 978-1-119-40006-6. [Google Scholar]
- Gartner, L.P. Textbook of Histology, 4th ed.; Elsevier: Philadelphia, PA, USA, 2017; ISBN 978-0-323-35563-6. [Google Scholar]
- Hillman, H. Limitations of Clinical and Biological Histology. Med. Hypotheses 2000, 54, 553–564. [Google Scholar] [CrossRef]
- Sucaet, Y.; Waelput, W. Digital Pathology; Springer Briefs in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-319-08779-5. [Google Scholar]
- DSouza, A.V.; Lin, H.; Henderson, E.R.; Samkoe, K.S.; Pogue, B.W. Review of Fluorescence Guided Surgery Systems: Identification of Key Performance Capabilities beyond Indocyanine Green Imaging. J. Biomed. Opt. 2016, 21, 080901. [Google Scholar] [CrossRef]
- Pampín-Suárez, S.; Arce-Diego, J.L.; Tapia, O.; Pérez-Campo, F.M.; Rodríguez-Rey, J.C.; Fanjul-Vélez, F. Cytotoxicity Analysis of Oxazine 4-Perchlorate Fluorescence Nerve Potential Clinical Biomarker for Guided Surgery. Biomed. Opt. Express 2022, 13, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Kofler, L.; Breuninger, H.; Schreiber, R.H.; Eichner, M.; Häfner, H.-M.; Schnabl, S.M. Three-dimensional Histology vs. Serial Section Histology in the Treatment of Primary Basal Cell Carcinoma: A Randomized, Prospective, Blinded Study of 569 Tumours. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Gilles, F.H.; Tavaré, C.J.; Laurence, E.B.; Burger, P.C.; Yates, A.J.; Pollack, I.F.; Finlay, J.L. Pathologist Interobserver Variability of Histologic Features in Childhood Brain Tumors: Results from the CCG-945 Study. Pediatr. Dev. Pathol. 2008, 11, 108–117. [Google Scholar] [CrossRef]
- Vo-Dinh, T. Biomedical Photonics Handbook; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-8493-1116-1. [Google Scholar]
- Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2015; ISBN 978-1-62841-516-2. [Google Scholar]
- Brezinski Mark, E.; Tearney Guillermo, J.; Bouma Brett, E.; Izatt Joseph, A.; Hee Michael, R.; Swanson Eric, A.; Southern James, F.; Fujimoto James, G. Optical Coherence Tomography for Optical Biopsy. Circulation 1996, 93, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W. Far-Field Optical Nanoscopy. Science 2007, 316, 1153–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-García, I.; Fanjul-Vélez, F.; Arce-Diego, J.L. Superficial Radially Resolved Fluorescence and 3D Photochemical Time-Dependent Model for Photodynamic Therapy. Opt. Lett. 2014, 39, 1845–1848. [Google Scholar] [CrossRef] [Green Version]
- Stelzle, F.; Tangermann-Gerk, K.; Adler, W.; Zam, A.; Schmidt, M.; Douplik, A.; Nkenke, E. Diffuse Reflectance Spectroscopy for Optical Soft Tissue Differentiation as Remote Feedback Control for Tissue-Specific Laser Surgery. Lasers Surg. Med. 2010, 42, 319–325. [Google Scholar] [CrossRef]
- de Boer, J.F.; Milner, T.E. Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination. J. Biomed. Opt. 2002, 7, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Fanjul-Vélez, F.; Arce-Diego, J.L. Polarimetry of Birefringent Biological Tissues with Arbitrary Fibril Orientation and Variable Incidence Angle. Opt. Lett. 2010, 35, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Alfano, R.; Pu, Y. 11—Optical Biopsy for Cancer Detection. In Lasers for Medical Applications; Jelínková, H., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2013; pp. 325–367. ISBN 978-0-85709-237-3. [Google Scholar]
- Zernike, F. Phase Contrast, a New Method for the Microscopic Observation of Transparent Objects. Physica 1942, 9, 686–698. [Google Scholar] [CrossRef]
- Gabor, D. A New Microscopic Principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, G. Quantitative Phase Imaging of Cells and Tissues; McGraw-Hill Education: New York, NY, USA, 2011; ISBN 978-0-07-166342-7. [Google Scholar]
- Chen, X.; Kandel, M.E.; Popescu, G. Spatial Light Interference Microscopy: Principle and Applications to Biomedicine. Adv. Opt. Photon. 2021, 13, 353–425. [Google Scholar] [CrossRef]
- Javidi, B.; Carnicer, A.; Anand, A.; Barbastathis, G.; Chen, W.; Ferraro, P.; Goodman, J.W.; Horisaki, R.; Khare, K.; Kujawinska, M.; et al. Roadmap on Digital Holography [Invited]. Opt. Express 2021, 29, 35078–35118. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, M.; Trivedi, V.; Chhaniwal, V.; Claus, D.; Javidi, B.; Anand, A. LED Based Large Field of View Off-Axis Quantitative Phase Contrast Microscopy by Hologram Multiplexing. Opt. Express 2022, 30, 29234–29245. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Huang, Y.; Teng, D.; Bian, Y.; Wu, Y.; Rivenson, Y.; Feizi, A.; Ozcan, A. Accurate Color Imaging of Pathology Slides Using Holography and Absorbance Spectrum Estimation of Histochemical Stains. J. Biophoton. 2019, 12, e201800335. [Google Scholar] [CrossRef] [Green Version]
- Shan, M.; Kandel, M.E.; Popescu, G. Refractive Index Variance of Cells and Tissues Measured by Quantitative Phase Imaging. Opt. Express 2017, 25, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, J.; Korotkova, O. Light Scintillation in Soft Biological Tissues. Waves Random Complex Media 2020, 30, 481–489. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, H.; Popescu, G. Scattering-Phase Theorem. Opt. Lett. 2011, 36, 1215–1217. [Google Scholar] [CrossRef]
- Ganoza-Quintana, J.L.; Fanjul-Vélez, F.; Arce-Diego, J.L. Digital Histology by Phase Imaging Specific Biomarkers for Human Tumoral Tissues Discrimination. Appl. Sci. 2021, 11, 6142. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital Pathology and Artificial Intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Chakraborty, C.; Racoceanu, D. Efficient Deep Learning Model for Mitosis Detection Using Breast Histopathology Images. Comput. Med. Imaging Graph. 2018, 64, 29–40. [Google Scholar] [CrossRef]
- Couture, H.D.; Williams, L.A.; Geradts, J.; Nyante, S.J.; Butler, E.N.; Marron, J.S.; Perou, C.M.; Troester, M.A.; Niethammer, M. Image Analysis with Deep Learning to Predict Breast Cancer Grade, ER Status, Histologic Subtype, and Intrinsic Subtype. Npj Breast Cancer 2018, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Sci. Rep. 2020, 10, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated Deep-Learning System for Gleason Grading of Prostate Cancer Using Biopsies: A Diagnostic Study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Howard, F.M.; Dolezal, J.; Kochanny, S.; Schulte, J.; Chen, H.; Heij, L.; Huo, D.; Nanda, R.; Olopade, O.I.; Kather, J.N.; et al. The Impact of Site-Specific Digital Histology Signatures on Deep Learning Model Accuracy and Bias. Nat. Commun. 2021, 12, 4423. [Google Scholar] [CrossRef]
- Schmitt, J.M.; Kumar, G. Turbulent Nature of Refractive-Index Variations in Biological Tissue. Opt. Lett. 1996, 21, 1310–1312. [Google Scholar] [CrossRef]
- Baish, J.W.; Jain, R.K. Fractals and Cancer. Cancer Res. 2000, 60, 3683–3688. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Aggarwal, C.C. An Introduction to Artificial Intelligence. In Artificial Intelligence: A Textbook; Aggarwal, C.C., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–34. ISBN 978-3-030-72357-6. [Google Scholar]
- Fanjul-Vélez, F.; Pampín-Suárez, S.; Arce-Diego, J.L. Application of Classification Algorithms to Diffuse Reflectance Spectroscopy Measurements for Ex Vivo Characterization of Biological Tissues. Entropy 2020, 22, 736. [Google Scholar] [CrossRef]
Sample 1 | RIV 2 | SC 3 [rad2/mm] | AF 4 | FD 5 | OS 6 [µm] |
---|---|---|---|---|---|
10x liver H | 0.0244 ± 0.0059 | 18.15 ± 20.30 | 0.98087 ± 0.05989 | 2.707 ± 0.250 | 81.56 ± 8.65 |
10x liver T | 0.0267 ± 0.0041 | 32.17 ± 30.34 | 0.88799 ± 0.52312 | 2.525 ± 0.363 | 80.18 ± 14.84 |
20x liver H | 0.0217 ± 0.0049 | 36.57 ± 29.09 | 0.99653 ± 0.00472 | 2.670 ± 0.285 | 40.90 ± 3.45 |
20x liver T | 0.0169 ± 0.0080 | 20.81 ± 19.99 | 0.99802 ± 0.00324 | 2.485 ± 0.405 | 39.10 ± 5.57 |
40x liver H | 0.0124 ± 0.0050 | 23.29 ± 14.78 | 0.99932 ± 0.00030 | 3.194 ± 0.207 | 25.40 ± 2.54 |
40x liver T | 0.0128 ± 0.0067 | 25.99 ± 26.17 | 0.99924 ± 0.00038 | 3.129 ± 0.309 | 24.60 ± 3.77 |
10x kidney H | 0.0278 ± 0.0058 | 25.77 ± 26.86 | 0.95906 ± 0.14489 | 2.402 ± 0.357 | 81.18 ± 26.20 |
10x kidney T | 0.0246 ± 0.0065 | 19.53 ± 25.48 | 0.99178 ± 0.01074 | 2.529 ± 0.372 | 81.32 ± 13.49 |
20x kidney H | 0.0168 ± 0.0051 | 23.94 ± 17.52 | 0.99856 ± 0.00147 | 2.553 ± 0.487 | 41.38 ± 7.87 |
20x kidney T | 0.0194 ± 0.0040 | 41.66 ± 19.09 | 0.99897 ± 0.00083 | 2.647 ± 0.384 | 41.44 ± 6.16 |
40x kidney H | 0.0104 ± 0.0041 | 14.50 ± 16.04 | 0.99871 ± 0.00252 | 3.215 ± 0.273 | 26.69 ± 4.87 |
40x kidney T | 0.0136 ± 0.0037 | 30.45 ± 16.89 | 0.99937 ± 0.00030 | 3.172 ± 0.320 | 25.67 ± 4.62 |
10x ganglion H | 0.0223 ± 0.0042 | 11.10 ± 15.23 | 0.99132 ± 0.00988 | 2.615 ± 0.163 | 78.76 ± 4.83 |
10x ganglion T | 0.0290 ± 0.0043 | 16.37 ± 26.96 | 0.96354 ± 0.04785 | 2.218 ± 0.255 | 71.32 ± 5.31 |
20x ganglion H | 0.0206 ± 0.0021 | 43.46 ± 12.91 | 0.99913 ± 0.00017 | 2.629 ± 0.132 | 39.54 ± 2.45 |
20x ganglion T | 0.0144 ± 0.0063 | 18.07 ± 15.31 | 0.99884 ± 0.00036 | 2.665 ± 0.416 | 41.05 ± 6.36 |
40x ganglion H | 0.0108 ± 0.0042 | 18.39 ± 11.12 | 0.99938 ± 0.00013 | 3.275 ± 0.233 | 26.26 ± 4.62 |
40x ganglion T | 0.0126 ± 0.0035 | 22.74 ± 16.10 | 0.99930 ± 0.00020 | 3.166 ± 0.222 | 24.51 ± 2.75 |
10x testicle H | 0.0201 ± 0.0038 | 21.76 ± 24.11 | 0.93896 ± 0.11773 | 2.661 ± 0.254 | 80.36 ± 7.43 |
10x testicle T | 0.0238 ± 0.0052 | 33.17 ± 37.61 | 0.98946 ± 0.02517 | 2.558 ± 0.311 | 78.10 ± 7.05 |
20x testicle H | 0.0143 ± 0.0083 | 16.99 ± 15.30 | 0.99882 ± 0.00077 | 2.777 ± 0.699 | 45.26 ± 11.38 |
20x testicle T | 0.0182 ± 0.0021 | 39.35 ± 21.37 | 0.99888 ± 0.00178 | 2.617 ± 0.242 | 39.61 ± 3.43 |
40x testicle H | 0.0156 ± 0.0044 | 39.12 ± 17.51 | 0.99932 ± 0.00043 | 3.123 ± 0.547 | 26.16 ± 6.65 |
40x testicle T | 0.0127 ± 0.0020 | 27.96 ± 13.16 | 0.99943 ± 0.00020 | 3.144 ± 0.207 | 24.20 ± 2.52 |
10x brain H | 0.0261 ± 0.0019 | 66.19 ± 24.08 | 0.99693 ± 0.00677 | 2.428 ± 0.065 | 74.67 ± 3.57 |
10x brain T | 0.0302 ± 0.0032 | 43.64 ± 35.87 | 0.99349 ± 0.00748 | 2.179 ± 0.155 | 70.42 ± 3.60 |
20x brain H | 0.0148 ± 0.0013 | 17.18 ± 6.24 | 0.99886 ± 0.00019 | 2.604 ± 0.065 | 39.16 ± 1.47 |
20x brain T | 0.0138 ± 0.0048 | 15.97 ± 8.98 | 0.99891 ± 0.00028 | 2.683 ± 0.373 | 40.87 ± 4.96 |
40x brain H | 0.0097 ± 0.0010 | 10.60 ± 2.94 | 0.99923 ± 0.00007 | 3.249 ± 0.075 | 25.08 ± 1.42 |
40x brain T | 0.0099 ± 0.0031 | 16.03 ± 12.24 | 0.99940 ± 0.00015 | 3.322 ± 0.194 | 26.38 ± 2.83 |
Parameter | Magnification | Liver | Kidney | Ganglion | Testicle | Brain |
---|---|---|---|---|---|---|
10x | 0.0040 | 8.0806·10−4 | 1.4369·10−14 | 0.0011 | 5.9980·10−15 | |
RIV1 | 20x | 4.4433·10−6 | 3.1213·10−4 | 0.0032 | 0.0085 | 6.5141·10−9 |
40x | 0.5945 | 1.9982·10−7 | 0.0529 | 6.5115·10−4 | 1.3054·10−4 | |
10x | 4.8004·10−4 | 0.1197 | 0.0019 | 0.1300 | 1.0044·10−11 | |
SC2 [rad2/mm] | 20x | 5.4952·10−5 | 1.9922·10−9 | 1.4394·10−5 | 2.7525·10−6 | 0.0013 |
40x | 0.4064 | 1.9241·10−9 | 0.2551 | 0.0032 | 0.0035 | |
10x | 0.1037 | 0.0383 | 0.3281 | 0.0141 | 2.8297·10−4 | |
AF3 | 20x | 0.0164 | 0.0242 | 5.3934·10−6 | 0.8691 | 0.1726 |
40x | 0.1730 | 0.0168 | 0.0047 | 0.1625 | 0.0230 | |
10x | 0.0578 | 0.0235 | 1.1789·10−19 | 0.1273 | 1.9627·10−14 | |
FD4 | 20x | 7.0542·10−4 | 0.1613 | 0.2120 | 0.2003 | 3.4772·10−6 |
40x | 0.1081 | 0.3510 | 0.0074 | 0.8295 | 0.0019 | |
10x | 0.4571 | 0.9641 | 1.0577·10−12 | 0.1898 | 6.8376·10−7 | |
OS5 [µm] | 20x | 0.0120 | 0.9517 | 0.8872 | 0.0058 | 1.8737·10−4 |
40x | 0.1068 | 0.1628 | 0.0092 | 0.1041 | 0.0286 |
Classifier | Error Rate 1 | Magnification | Liver | Kidney | Ganglion | Testicle | Brain |
---|---|---|---|---|---|---|---|
LDA2 | FP | 10x | 0.1462 | 0.1570 | 0.0463 | 0.0833 | 0.0741 |
20x | 0.0349 | 0.1520 | 0.0463 | 0.0417 | 0.3333 | ||
40x | 0.1124 | 0.1047 | 0.2358 | 0 | 0.0741 | ||
FN | 10x | 0.2047 | 0.2267 | 0.0556 | 0.0278 | 0.0370 | |
20x | 0.0640 | 0.1345 | 0.0370 | 0.0556 | 0 | ||
40x | 0.2249 | 0.1453 | 0.0755 | 0.0278 | 0.0556 | ||
QDA3 | FP | 10x | 0.0351 | 0.4012 | 0.0370 | 0.1250 | 0 |
20x | 0.0523 | 0.1813 | 0.0278 | 0 | 0 | ||
40x | 0.0592 | 0.3372 | 0.0660 | 0 | 0.0185 | ||
FN | 10x | 0.3801 | 0.0349 | 0.0370 | 0.0139 | 0.0556 | |
20x | 0.0523 | 0.0585 | 0.0093 | 0.0278 | 0.0185 | ||
40x | 0.3018 | 0.0174 | 0.2075 | 0.0139 | 0.0926 | ||
kNB4 | FP | 10x | 0.1279 | 0.0930 | 0.0278 | 0.0139 | 0 |
20x | 0.0407 | 0.1105 | 0.0278 | 0.0278 | 0 | ||
40x | 0.1279 | 0.0640 | 0.0648 | 0.0417 | 0.0185 | ||
FN | 10x | 0.1105 | 0.0872 | 0.0556 | 0.0139 | 0.1667 | |
20x | 0.0291 | 0.0930 | 0.0370 | 0 | 0.0926 | ||
40x | 0.1395 | 0.0988 | 0.1204 | 0 | 0.1111 | ||
NB5 | FP | 10x | 0.0407 | 0.3953 | 0.0648 | 0.2500 | 0.0185 |
20x | 0.0523 | 0.1395 | 0.0556 | 0.0694 | 0.0185 | ||
40x | 0.0988 | 0.3198 | 0.2593 | 0.0139 | 0.0556 | ||
FN | 10x | 0.3837 | 0.0349 | 0.0278 | 0.1806 | 0.1296 | |
20x | 0.0581 | 0.1221 | 0.0648 | 0.0278 | 0.0741 | ||
40x | 0.2616 | 0.0174 | 0.1389 | 0.0556 | 0.0741 | ||
kNN6 | FP | 10x | 0.0988 | 0.0814 | 0.1759 | 0.0694 | 0.0556 |
20x | 0.1163 | 0.1105 | 0.0926 | 0.0694 | 0.1296 | ||
40x | 0.1221 | 0.0988 | 0.2037 | 0.1528 | 0.1481 | ||
FN | 10x | 0.1221 | 0.1453 | 0.0833 | 0.0556 | 0.0741 | |
20x | 0.1395 | 0.1105 | 0.0648 | 0.0972 | 0.0741 | ||
40x | 0.1453 | 0.0640 | 0.0648 | 0.1389 | 0.0741 | ||
SVM7 | FP | 10x | 0.3953 | 0.3314 | 0.3148 | 0.1944 | 0.2963 |
20x | 0.2326 | 0.1395 | 0 | 0.4583 | 0.2407 | ||
40x | 0.0233 | 0.0349 | 0.0741 | 0.0417 | 0 | ||
FN | 10x | 0.2151 | 0.0872 | 0.0926 | 0.3194 | 0.3333 | |
20x | 0.1221 | 0.1221 | 0.6667 | 0.2639 | 0.2407 | ||
40x | 0.4360 | 0.3430 | 0.4630 | 0.4861 | 0.6481 | ||
DT8 | FP | 10x | 0.0640 | 0.0349 | 0.0093 | 0 | 0 |
20x | 0.0174 | 0.0523 | 0.0093 | 0.0139 | 0 | ||
40x | 0.0116 | 0.0465 | 0.0463 | 0 | 0.0370 | ||
FN | 10x | 0.0233 | 0.0233 | 0.0093 | 0.0139 | 0.0370 | |
20x | 0.0116 | 0.0233 | 0.0093 | 0 | 0.0741 | ||
40x | 0.0640 | 0.0233 | 0.0463 | 0 | 0.0185 | ||
ANN9 | FP | 10x | 0.2907 | 0.1395 | 0.0278 | 0.0417 | 0.0556 |
20x | 0.0349 | 0.1163 | 0.1111 | 0.0417 | 0.0370 | ||
40x | 0.0988 | 0.1105 | 0.0926 | 0.0139 | 0 | ||
FN | 10x | 0.0814 | 0.4302 | 0.0093 | 0.0139 | 0.1481 | |
20x | 0.0291 | 0.1105 | 0.1019 | 0.0417 | 0.0556 | ||
40x | 0.1512 | 0.1163 | 0.1667 | 0 | 0.3333 |
Classifier | Error Rate 1 | Magnification | Liver | Kidney | Ganglion | Testicle | Brain |
---|---|---|---|---|---|---|---|
LDA2 | FP | 10x | 0.1510 | 0.1807 | 0.0545 | 0.1089 | 0.0867 |
20x | 0.0408 | 0.1454 | 0.0555 | 0.0411 | 0.3167 | ||
40x | 0.1222 | 0.1157 | 0.2682 | 0 | 0.1333 | ||
FN | 10x | 0.2157 | 0.2373 | 0.0564 | 0.0536 | 0.0767 | |
20x | 0.0814 | 0.1513 | 0.0464 | 0.0696 | 0.0167 | ||
40x | 0.2614 | 0.1503 | 0.0655 | 0.0268 | 0.0700 | ||
QDA3 | FP | 10x | 0.0526 | 0.4072 | 0.0636 | 0.1679 | 0.0600 |
20x | 0.0585 | 0.2039 | 0.0464 | 0.0268 | 0.0767 | ||
40x | 0.1046 | 0.3670 | 0.1473 | 0 | 0.0967 | ||
FN | 10x | 0.3778 | 0.0350 | 0.0382 | 0.0268 | 0.0767 | |
20x | 0.0578 | 0.0761 | 0.0191 | 0.0429 | 0.0200 | ||
40x | 0.3196 | 0.0288 | 0.2218 | 0.0268 | 0.1300 | ||
kNB4 | FP | 10x | 0.1856 | 0.1343 | 0.0545 | 0.1536 | 0.0600 |
20x | 0.0408 | 0.1458 | 0.0464 | 0.0125 | 0.0367 | ||
40x | 0.1392 | 0.1219 | 0.1200 | 0.0429 | 0.0567 | ||
FN | 10x | 0.1510 | 0.1680 | 0.0564 | 0.0411 | 0.1833 | |
20x | 0.0641 | 0.1333 | 0.0373 | 0.0268 | 0.0733 | ||
40x | 0.2206 | 0.1039 | 0.1600 | 0.0536 | 0.1267 | ||
NB5 | FP | 10x | 0.0467 | 0.4013 | 0.0636 | 0.2946 | 0.0400 |
20x | 0.0523 | 0.1454 | 0.0564 | 0.0411 | 0.0767 | ||
40x | 0.0984 | 0.3088 | 0.2500 | 0.0143 | 0.0767 | ||
FN | 10x | 0.3716 | 0.0405 | 0.0291 | 0.1375 | 0.1367 | |
20x | 0.0637 | 0.1461 | 0.0555 | 0.0554 | 0.0733 | ||
40x | 0.2732 | 0.0288 | 0.1482 | 0.0536 | 0.1233 | ||
kNN6 | FP | 10x | 0.1516 | 0.1575 | 0.2573 | 0.0839 | 0.1100 |
20x | 0.1866 | 0.1513 | 0.1127 | 0.1518 | 0.1233 | ||
40x | 0.2150 | 0.1333 | 0.2773 | 0.2089 | 0.1667 | ||
FN | 10x | 0.1582 | 0.1680 | 0.1664 | 0.0839 | 0.0967 | |
20x | 0.1575 | 0.1503 | 0.1109 | 0.1393 | 0.0567 | ||
40x | 0.2141 | 0.0931 | 0.1418 | 0.1929 | 0.1300 | ||
SVM7 | FP | 10x | 0.2435 | 0.1856 | 0.3145 | 0.2786 | 0.2533 |
20x | 0.1353 | 0.0990 | 0.0364 | 0.3625 | 0.2433 | ||
40x | 0.2428 | 0.0706 | 0.0927 | 0.0982 | 0.0333 | ||
FN | 10x | 0.2621 | 0.3546 | 0.0918 | 0.1946 | 0.2967 | |
20x | 0.3765 | 0.1814 | 0.6309 | 0.2518 | 0.2167 | ||
40x | 0.2461 | 0.3954 | 0.3882 | 0.3179 | 0.6000 | ||
DT8 | FP | 10x | 0.1503 | 0.0987 | 0.0455 | 0.0696 | 0.0200 |
20x | 0.0699 | 0.0824 | 0.0373 | 0.0268 | 0.0533 | ||
40x | 0.0935 | 0.1222 | 0.1473 | 0.0143 | 0.0967 | ||
FN | 10x | 0.1160 | 0.1111 | 0.0636 | 0.0679 | 0.0767 | |
20x | 0.0637 | 0.1101 | 0.0282 | 0.0554 | 0.1233 | ||
40x | 0.1389 | 0.0980 | 0.1009 | 0.0429 | 0.1233 | ||
ANN9 | FP | 10x | 0.1216 | 0.0925 | 0.0182 | 0.0429 | 0.0533 |
20x | 0.0118 | 0.1163 | 0.0182 | 0.0143 | 0.0533 | ||
40x | 0.1333 | 0.1042 | 0.1482 | 0 | 0.0333 | ||
FN | 10x | 0.1451 | 0.1458 | 0.0191 | 0.0143 | 0.0567 | |
20x | 0.0350 | 0.1052 | 0.0191 | 0.0143 | 0.0700 | ||
40x | 0.0866 | 0.0922 | 0.0736 | 0.0143 | 0.0167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganoza-Quintana, J.L.; Arce-Diego, J.L.; Fanjul-Vélez, F. Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy. Sensors 2022, 22, 9295. https://doi.org/10.3390/s22239295
Ganoza-Quintana JL, Arce-Diego JL, Fanjul-Vélez F. Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy. Sensors. 2022; 22(23):9295. https://doi.org/10.3390/s22239295
Chicago/Turabian StyleGanoza-Quintana, José Luis, José Luis Arce-Diego, and Félix Fanjul-Vélez. 2022. "Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy" Sensors 22, no. 23: 9295. https://doi.org/10.3390/s22239295
APA StyleGanoza-Quintana, J. L., Arce-Diego, J. L., & Fanjul-Vélez, F. (2022). Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy. Sensors, 22(23), 9295. https://doi.org/10.3390/s22239295