Feasibility of Skin Water Content Imaging Using CMOS Sensors
Abstract
:1. Introduction
2. Methods
2.1. Tissue Model
2.1.1. Bulk Water Content
Tissue Reflectance Model
2.1.2. Localized Water Pool
2.2. Simulations
2.3. Model Parameters
2.3.1. Absorption
2.3.2. Scattering
2.3.3. Index of Refraction
2.3.4. Water Content
3. Results
3.1. Tissue Reflectance
3.2. Contrast Ratio of Bulk Water Anomalies
3.3. Contrast Ratio of Localized Pools of Moisture
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strazzieri-Pulido, K.C.; SGonzález, C.V.; Nogueira, P.C.; Padilha, K.G.; GSantos, V.L. Pressure injuries in critical patients: Incidence, patient-associated factors, and nursing workload. J. Nurs. Manag. 2019, 27, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Schnelle, J.F.; Adamson, G.M.; Cruise, P.A.; Al-Samarrai, N.; Sarbaugh, F.C.; Uman, G.; Ouslander, J.G. Skin disorders and moisture in incontinent nursing home residents: Intervention implications. J. Am. Geriatr. Soc. 1997, 45, 1182–1188. [Google Scholar] [CrossRef]
- Bergstrom, N.; Braden, B.; Kemp, M.; Champagne, M.; Ruby, E. Multi-site study of incidence of pressure ulcers and the relationship between risk level, demographic characteristics, diagnoses, and prescription of preventive interventions. J. Am. Geriatr. Soc. 1996, 44, 22–30. [Google Scholar] [CrossRef]
- Edsberg, L.E.; Black, J.M.; Goldberg, M.; McNichol, L.; Moore, L.; Sieggreen, M. Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. J. Wound Ostomy Cont. Nurs. Off. Publ. Wound Ostomy Cont. Nurses Soc. 2016, 43, 585–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuler, J.B.; Cooney, T.G. The pressure sore: Pathophysiology and principles of management. Ann. Intern. Med. 1981, 94, 661. [Google Scholar] [CrossRef] [PubMed]
- Harms, S.; Bliss, D.Z.; Garrard, J.; Cunanan, K.; Savik, K.; Gurvich, O.; Mueller, C.; Wyman, J.F.; Eberly, L.; Virnig, B. Prevalence of pressure ulcers by race and ethnicity for older adults admitted to nursing homes. J. Gerontol. Nurs. 2014, 40, 20–26. [Google Scholar] [CrossRef]
- Lyder, C.H.; Yu, C.; Emerling, J.; Mangat, R.; Stevenson, D.; Empleo-Frazier, O.; McKay, J. The Braden Scale for pressure ulcer risk: Evaluating the predictive validity in Blacks and Latino/Hispanic elders. Appl. Nurs. Res. 1999, 12, 60–68. [Google Scholar] [CrossRef]
- Rosen, J.; Mittal, V.; Degenholtz, H.; Castle, N.; Mulsant, B.H.; Nace, D.; Rubin, F.H. Pressure ulcer prevention in black and white nursing home residents: A QI initiative of enhanced ability, incentives, and management feedback. Adv. Skin Wound Care 2006, 19, 262–268. [Google Scholar] [CrossRef]
- Redelings, M.D.; Lee, N.E.; Sorvillo, F. Pressure ulcers: More lethal than we thought? Adv. Skin Wound Care 2005, 18, 367–372. [Google Scholar] [CrossRef]
- Moore, Z.; McEvoy, N.L.; Avsar, P.; Byrne, S.; VitorianoBudri, A.M.; Nugent, L.; O’Connor, T.; Curley, G.; Patton, D. Measuring sub-epidermal moisture to detect early pressure ulcer development: A systematic review. J. Wound Care 2022, 31, 634–647. [Google Scholar] [CrossRef]
- Moore, Z.; Patton, D.; Rhodes, S.L.; O’Connor, T. Subepidermal moisture (SEM) and bioimpedance: A literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers). Int. Wound J. 2017, 14, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Herrman, E.C.; Knapp, C.F.; Donofrio, J.C.; Salcido, R. Skin perfusion responses to surface pressure-induced ischemia: Implications for the developing pressure ulcer. J. Rehab. Res. Dev. 1999, 36, 109–120. [Google Scholar]
- Bates-Jensen, B.M.; McCreath, H.E.; Kono, A.; Apeles, N.C.; Alessi, C. Sub-Epidermal Moisture Predicts Erythema and Stage I Pressure Ulcers in Nursing Home Residents: A Pilot Study. J. Am. Geriatr. Soc. 2007, 55, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Bates-Jensen, B.M.; McCreath, H.E.; Pongquan, V.; Apeles, N.C.R. Sub-Epidermal Moisture Differentiates Erythema and Stage I Pressure Ulcers in Nursing Home Residents. Wound Repair Regen. 2008, 16, 189–197. [Google Scholar] [CrossRef]
- Smith, G. Improved clinical outcomes in pressure ulcer prevention using the SEM scanner. J. Wound Care 2019, 28, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Attas, M.; Posthumus, T.; Schattka, B.; Sowa, M.; Mantsch, H.; Zhang, S. Long-wavelength near infrared spectroscopic imaging for in-vivo skin hydration measurements. Vib. Spectrosc. 2002, 28, 37–43. [Google Scholar] [CrossRef]
- Luck, W.A.P. (Ed.) Infrared overtone region. In Structure of Water and Aqueous Solutions; Verlag Chemie: Weinheim, Germany, 1974; pp. 248–284. [Google Scholar]
- Martin, K. In vivo measurements of water in skin by near-infrared reflectance. Appl. Spec. 1998, 52, 1001. [Google Scholar] [CrossRef]
- Saiko, G. On the Feasibility of Skin Water Content Imaging Adjuvant to Tissue Oximetry. Adv. Exp. Med. Biol. 2021, 1269, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.R.; Myers, M.C.; Taylor, D.A. Electron probe analysis of human skin: Determination of the water concentration profile. J. Investig. Dermatol. 1988, 90, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Star, W.M. Diffusion Theory of Light Transport. In Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed.; Welch, A.J., Ed.; Springer: Dordrech, The Netherlands, 2011; pp. 145–202. [Google Scholar]
- Saiko, G.; Douplik, A. Contrast Ratio during Visualization of Subsurface Optical Inhomogeneities in Turbid Tissues: Perturbation Analysis. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021), Online, 11–13 February 2021; Volume 2, pp. 94–102. [Google Scholar] [CrossRef]
- Saiko, G.; Douplik, A. Visibility of capillaries in turbid tissues: An analytical approach. arXiv 2022, arXiv:2210.04301. [Google Scholar] [CrossRef]
- Jacques, S.L. Origins of tissue optical properties in the UVA, visible, and NIR regions. In Advances in Optical Imaging and Photon Migration; Alfano, R.R., Fujimoto, J.G., Eds.; Optical Society of America: Washington, DC, USA, 1996; Volume 2, pp. 364–370. [Google Scholar]
- Prahl, S. Optical Absorption of Hemoglobin. Available online: http://omlc.ogi.edu/spectra/hemoglobin/hemestruct/index.html (accessed on 10 August 2022).
- Lister, T.; Wright, P.A.; Chappell, P.H. Optical properties of human skin. J. Biomed. Opt. 2012, 17, 090901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200nm to200 micron wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourant, J.R.; Freyer, J.P.; Hielscher, A.H.; Eick, A.A.; Shen, D.; Johnson, T.M. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 1998, 37, 3586–3593. [Google Scholar] [CrossRef] [PubMed]
- Meglinski, I.V.; Matcher, S.J. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol. Meas. 2002, 23, 741–753. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Tuchin, V.N. Optical properties of skin, subcutaneous, and muscle tissues: A review. J.Innov. Opt. Health Sci. 2011, 4, 9–38. [Google Scholar] [CrossRef]
- Ding, H.; Lu, J.Q.; Wooden, W.A.; Kragel, P.J.; Hu, X.H. Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 2006, 51, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Braunwald, E. Edema. In Harrison’s Principles of Internal Medicine, 13th ed.; Isselbacher, K.J., Braunwald, E., Wilson, J.D., Martin, J.B., Fauci, A.S., Kasper, D.L., Eds.; McGraw-Hill: New York, NY, USA, 1994; pp. 183–187. [Google Scholar]
- Bhave, G.; Neilson, E.G. Body Fluid Dynamics: Back to the Future. J. Am. Soc. Nephrol. 2011, 22, 2166–2181. [Google Scholar] [CrossRef] [Green Version]
- Saiko, G.; Betlen, A. Optimization of Band Selection in Multispectral and Narrow-Band Imaging: An Analytical Approach. Adv. Exp. Med. Biol. 2019, 1232, 361–367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiko, G. Feasibility of Skin Water Content Imaging Using CMOS Sensors. Sensors 2023, 23, 919. https://doi.org/10.3390/s23020919
Saiko G. Feasibility of Skin Water Content Imaging Using CMOS Sensors. Sensors. 2023; 23(2):919. https://doi.org/10.3390/s23020919
Chicago/Turabian StyleSaiko, Gennadi. 2023. "Feasibility of Skin Water Content Imaging Using CMOS Sensors" Sensors 23, no. 2: 919. https://doi.org/10.3390/s23020919
APA StyleSaiko, G. (2023). Feasibility of Skin Water Content Imaging Using CMOS Sensors. Sensors, 23(2), 919. https://doi.org/10.3390/s23020919