Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Analysis
2.3. Statistical Methods
3. Results
3.1. Participants’ Characteristics
3.2. Analysis of the Entire 6MWT
3.3. Minute-by-Minute Analysis of the 6MWT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannus, P.; Sievänen, H.; Palvanen, M.; Järvinen, T.; Parkkari, J. Prevention of falls and consequent injuries in elderly people. Lancet 2005, 366, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: A systematic review and meta-analysis. J. Clin. Epidemiol. 2010, 63, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Esser, S.; Bailey, A. Effects of Exercise and Physical Activity on Knee Osteoarthritis. Curr. Pain Headache Rep. 2011, 15, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Garstang, S.V.; Stitik, T.P. Osteoarthritis: Epidemiology, Risk Factors, and Pathophysiology. Am. J. Phys. Med. Rehabil. 2006, 85, S2–S11. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Yoshimura, N.; Muraki, S.; Yamada, H.; Nagata, K.; Hashizume, H.; Takiguchi, N.; Minamide, A.; Oka, H.; Kawaguchi, H.; et al. Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: The Wakayama Spine Study. Osteoarthr. Cartil. 2012, 20, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.M. Disability and the Future of Medicare. N. Engl. J. Med. 2003, 349, 1084–1085. [Google Scholar] [CrossRef]
- Lubitz, J.; Cai, L.; Kramarow, E.; Lentzner, H. Health, Life Expectancy, and Health Care Spending among the Elderly. N. Engl. J. Med. 2003, 349, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Yelin, E. Cost of musculoskeletal diseases: Impact of work disability and functional decline. J. Rheumatol. Suppl. 2003, 68, 8–11. [Google Scholar]
- Katz, J.N.; Harris, M.B. Clinical practice. Lumbar spinal stenosis. N. Engl. J. Med. 2008, 358, 818–825. [Google Scholar] [CrossRef]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef]
- Simon, L.S. Osteoarthritis: A review. Clin. Cornerstone 1999, 2, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Odonkor, C.; Kuwabara, A.; Tomkins-Lane, C.; Zhang, W.; Muaremi, A.; Leutheuser, H.; Sun, R.; Smuck, M. Gait features for discriminating between mobility-limiting musculoskeletal disorders: Lumbar spinal stenosis and knee osteoarthritis. Gait Posture 2020, 80, 96–100. [Google Scholar] [CrossRef]
- Rudisch, J.; Jöllenbeck, T.; Vogt, L.; Cordes, T.; Klotzbier, T.J.; Vogel, O.; Wollesen, B. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture 2021, 85, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, Y.; Armand, S.; Lubbeke, A.; Hoffmeyer, P.; Fritschy, D.; Suva, D.; Turcot, K. Associations between gait and clinical parameters in patients with severe knee osteoarthritis: A multiple correspondence analysis. Clin. Biomech. 2013, 28, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Zeifang, F.; Schiltenwolf, M.; Abel, R.; Moradi, B. Gait analysis does not correlate with clinical and MR imaging parameters in patients with symptomatic lumbar spinal stenosis. BMC Musculoskelet. Disord. 2008, 9, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Din, S.; Galna, B.; Godfrey, A.; Bekkers, E.M.J.; Pelosin, E.; Nieuwhof, F.; Mirelman, A.; Hausdorff, J.M.; Rochester, L. Analysis of Free-Living Gait in Older Adults with and without Parkinson’s Disease and with and without a History of Falls: Identifying Generic and Disease-Specific Characteristics. J. Gerontol. Ser. A 2017, 74, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Gouelle, A.; Mégrot, F.; Presedo, A.; Husson, I.; Yelnik, A.; Penneçot, G.-F. The Gait Variability Index: A new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait Posture 2013, 38, 461–465. [Google Scholar] [CrossRef]
- Shema-Shiratzky, S.; Gazit, E.; Sun, R.; Regev, K.; Karni, A.; Sosnoff, J.J.; Herman, T.; Mirelman, A.; Hausdorff, J.M. Deterioration of specific aspects of gait during the instrumented 6-min walk test among people with multiple sclerosis. J. Neurol. 2019, 266, 3022–3030. [Google Scholar] [CrossRef]
- Burschka, J.M.; Keune, P.M.; Menge, U.; Oy, U.H.-V.; Oschmann, P.; Hoos, O. An exploration of impaired walking dynamics and fatigue in Multiple Sclerosis. BMC Neurol. 2012, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Sosnoff, J.J. Novel sensing technology in fall risk assessment in older adults: A systematic review. BMC Geriatr. 2018, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Smuck, M.; Legault, C.; Ith, M.A.; Muaremi, A.; Aminian, K. Gait Symmetry Assessment with a Low Back 3D Accelerometer in Post-Stroke Patients. Sensors 2018, 18, 3322. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Masood, Z.; Khan, H.; Khalil, N.; Kiwan, M.Y.; Ridd, S.; Tobis, M. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis-A Scoping Review. Sensors 2020, 20, 7143. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Dobson, F.; Hinman, R.S.; Hall, M.; Marshall, C.J.; Sayer, T.; Anderson, C.; Newcomb, N.; Stratford, P.W.; Bennell, K.L. Reliability and measurement error of the Osteoarthritis Research Society International (OARSI) recommended performance-based tests of physical function in people with hip and knee osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1792–1796. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, C.C.; Battié, M.; Rogers, T.; Jiang, H.; Petersen, S. A Criterion Measure of Walking Capacity in Lumbar Spinal Stenosis and Its Comparison with a Treadmill Protocol. Spine 2009, 34, 2444–2449. [Google Scholar] [CrossRef]
- Stellmann, J.P.; Neuhaus, A.; Götze, N.; Briken, S.; Lederer, C.; Schimpl, M.; Heesen, C.; Daumer, M. Ecological Validity of Walking Capacity Tests in Multiple Sclerosis. PLoS ONE 2015, 10, e01238222. [Google Scholar] [CrossRef] [Green Version]
- Motl, R.W.; Pilutti, L.; Sandroff, B.M.; Dlugonski, D.; Sosnoff, J.J.; Pula, J.H. Accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurol. Scand. 2013, 127, 384–390. [Google Scholar] [CrossRef]
- Moon, Y.; Sung, J.; An, R.; Hernandez, M.E.; Sosnoff, J.J. Gait variability in people with neurological disorders: A systematic review and meta-analysis. Hum. Mov. Sci. 2016, 47, 197–208. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Lord, S.; Galna, B.; Rochester, L. Moving forward on gait measurement: Toward a more refined approach. Mov. Disord. 2013, 28, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.; Weiss, A.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. Gait and balance in Parkinson’s disease subtypes: Objective measures and classification considerations. J. Neurol. 2014, 261, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Brozgol, M.; Dorfman, M.; Herman, T.; Shema, S.; Giladi, N.; Hausdorff, J.M. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil. Neural. Repair. 2013, 27, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Herman, T.; Giladi, N.; Hausdorff, J.M. Objective assessment of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS ONE 2014, 9, e96675. [Google Scholar] [CrossRef] [Green Version]
- Brach, J.S.; Studenski, S.; Perera, S.; VanSwearingen, J.M.; Newman, A.B. Stance time and step width variability have unique contributing impairments in older persons. Gait Posture 2008, 27, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Baltadjieva, R.; Giladi, N.; Gruendlinger, L.; Peretz, C.; Hausdorff, J.M. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur. J. Neurosci. 2006, 24, 1815–1820. [Google Scholar] [CrossRef]
- Takakusaki, K. Neurophysiology of gait: From the spinal cord to the frontal lobe. Mov. Disord. 2013, 28, 1483–1491. [Google Scholar] [CrossRef]
- Wittwer, J.E.; Webster, K.E.; Hill, K. Reproducibility of gait variability measures in people with Alzheimer’s disease. Gait Posture 2013, 38, 507–510. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lertratanakul, A.; Cudkowicz, M.E.; Peterson, A.L.; Kaliton, D.; Goldberger, A.L. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 2000, 88, 2045–2053. [Google Scholar] [CrossRef] [Green Version]
- Schniepp, R.; Wuehr, M.; Schlick, C.; Huth, S.; Pradhan, C.; Dieterich, M.; Brandt, T.; Jahn, K. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J. Neurol. 2013, 261, 213–223. [Google Scholar] [CrossRef]
- Rao, A.K.; Muratori, L.; Louis, E.D.; Moskowitz, C.B.; Marder, K.S. Spectrum of gait impairments in presymptomatic and symptomatic Huntington’s disease. Mov. Disord. 2008, 23, 1100–1107. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Sandroff, B.M.; Motl, R.W. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 2012, 36, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Bello, O.; Sánchez, J.A.; Vazquez-Santos, C.; Fernandez-Del-Olmo, M. Spatiotemporal parameters of gait during treadmill and overground walking in Parkinson’s disease. J. Parkinsons Dis. 2014, 4, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, P.; Fonseka, R.D.; Sy, L.W.; Maharaj, M.M.; Mobbs, R.J. Analysing Gait Patterns in Degenerative Lumbar Spine Disease Using Inertial Wearable Sensors: An Observational Study. World Neurosurg. 2022, 163, e501–e515. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, N.C.; Christakis, D.G.; Tzagarakis, G.N.; Chlouverakis, G.I.; Kampanis, N.A.; Stergiopoulos, K.N.; Katonis, P.G. Gait variability measurements in lumbar spinal stenosis patients: Part A. Comparison with healthy subjects. Physiol. Meas. 2009, 30, 1171–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumpoch, S.; Lindemann, U.; Becker, C.; Sieber, C.C.; Freiberger, E. Short distance analysis of the 400-meter walk test of mobility in community-dwelling older adults. Gait Posture 2021, 88, 60–65. [Google Scholar] [CrossRef]
- Glynn, N.W.; Qiao, Y.S.; Simonsick, E.M.; Schrack, J.A. Response to: Comment on: Fatigability: A Prognostic Indicator of Phenotypic Aging. J. Gerontol. Ser. A 2021, 76, e161–e162. [Google Scholar] [CrossRef]
- Qiao, Y.S.; Harezlak, J.; Moored, K.D.; Urbanek, J.K.; Boudreau, R.M.; Toto, P.E.; Hawkins, M.; Santanasto, A.J.; Schrack, J.A.; Simonsick, E.M.; et al. Development of a Novel Accelerometry-Based Performance Fatigability Measure for Older Adults. Med. Sci. Sports Exerc. 2022, 54, 1782–1793. [Google Scholar] [CrossRef]
- Mariani, B.; Rouhani, H.; Crevoisier, X.; Aminian, K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 2013, 37, 229–234. [Google Scholar] [CrossRef]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Mariani, B.; Rochat, S.; Büla, C.J.; Aminian, K. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed. Eng. 2012, 59, 3162–3168. [Google Scholar] [CrossRef] [PubMed]
Domain | Parameter | Unit | Description |
---|---|---|---|
Rhythm | Cadence | steps/min | Number of steps per minute |
Double support ratio | % | Percentage of the cycle where both feet are on the ground | |
Swing Ratio | % | Percentage of the cycle during which the foot is in the air and does not touch the ground | |
Pace | Stride Length | meter | Distance between two successive heel strides. |
Speed | m/s | Forward stride speed of one cycle | |
Asymmetry | Stride length asymmetry | % | Symmetry index of stride length |
Swing asymmetry | % | Symmetry index of swing | |
Variability | CV for double support | % | Coefficient of variation for double support |
CV for swing | % | Coefficient of variation for swing | |
CV for stride length | % | Coefficient of variation for stride length | |
CV for cycle duration | % | Coefficient of variation for cycle duration |
p Value | |||||||
---|---|---|---|---|---|---|---|
Domain | Parameter | HC | LSS | KOA | HC-LSS | HC-KOA | LSS-KOA |
Rhythm | Cadence (steps/min) | 120.3 (8.2) | 106.1 (10.2) | 104.6 (7.1) | 0.003 | 0.001 | 0.900 |
Double Support (%) | 21.9 (4.0) | 29.7 (5.2) | 28.5 (5.9) | 0.005 | 0.019 | 0.861 | |
Swing (%) | 39.1 (2.0) | 35.1 (2.6) | 35.7 (2.9) | 0.005 | 0.019 | 0.851 | |
Pace | Speed (m/s) | 1.5 (0.3) | 1.1 (0.3) | 1.0 (0.2) | 0.010 | 0.003 | 0.878 |
Stride Length (m) | 1.4 (0.2) | 1.2 (0.3) | 1.2 (0.2) | 0.057 | 0.022 | 0.900 | |
Asymmetry | Stride Length Asymmetry (%) | 4.5 (0.4) | 4.6 (0.5) | 4.3 (0.5) | 0.900 | 0.416 | 0.340 |
Swing Asymmetry (%) | 4.0 (2.1) | 8.1 (4.9) | 9.7 (6.8) | 0.043 | 0.010 | 0.797 | |
Variability | Stride Length CV (%) | 3.6 (0.3) | 4.7 (0.8) | 4.0 (0.8) | 0.003 | 0.470 | 0.057 |
Cycle Duration CV (%) | 1.9 (0.7) | 3.1 (0.9) | 2.8 (0.8) | 0.003 | 0.025 | 0.678 | |
Swing CV (%) | 1.9 (0.5) | 3.1 (1.1) | 2.7 (0.7) | 0.003 | 0.025 | 0.628 | |
Double Support CV (%) | 7.1 (2.9) | 7.2 (1.2) | 7.2 (2.8) | 0.898 | 0.900 | 0.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushioka, J.; Sun, R.; Zhang, W.; Muaremi, A.; Leutheuser, H.; Odonkor, C.A.; Smuck, M. Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors. Sensors 2022, 22, 9301. https://doi.org/10.3390/s22239301
Kushioka J, Sun R, Zhang W, Muaremi A, Leutheuser H, Odonkor CA, Smuck M. Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors. Sensors. 2022; 22(23):9301. https://doi.org/10.3390/s22239301
Chicago/Turabian StyleKushioka, Junichi, Ruopeng Sun, Wei Zhang, Amir Muaremi, Heike Leutheuser, Charles A. Odonkor, and Matthew Smuck. 2022. "Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors" Sensors 22, no. 23: 9301. https://doi.org/10.3390/s22239301
APA StyleKushioka, J., Sun, R., Zhang, W., Muaremi, A., Leutheuser, H., Odonkor, C. A., & Smuck, M. (2022). Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors. Sensors, 22(23), 9301. https://doi.org/10.3390/s22239301