Salient Targets and Fear of Falling Changed the Gait Pattern and Joint Kinematic of Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Experimental Design
2.4. Data Analysis
2.4.1. Gait Detection
2.4.2. Variable Calculation
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Gait Pattern—Spatial Variables
3.3. Gait Pattern—Temporal Variables
3.4. Hip Posture at Heel Strikes and Toe Offs
4. Discussion
4.1. Summary
4.2. Gait Pattern Changes Caused by a Salient Target
4.3. Lower-Body Posture Changes Caused by a Salient Target
4.4. Effects of the Fear of Falling on Gait and Posture
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BOS | base of support |
COM | center of mass |
FES-I | Falls Efficacy Scale—International |
FoF | fear of falling |
IMU | inertial measurement unit |
LHS | left heel strike |
LTO | left toe off |
RHS | right heel strike |
RTO | right toe off |
Appendix A
Type | Variables | Target | FoF | Target × FoF | |||||
---|---|---|---|---|---|---|---|---|---|
Normal | Salient | p-Value | Low | High | p-Value | p-Value | |||
Gait Pattern—Spatial | Walking Speed Variability | 16.99 (6.26) | 18.17 (8.04) | 0.428 | 18.93 (8.17) | 16.39 (6.05) | 0.297 | 0.191 | |
Stride Length Variability | 25.94 (12.38) | 26.10 (13.30) | 0.930 | 23.96 (13.15) | 27.82 (12.29) | 0.295 | 0.531 | ||
Stride Width Variability | 29.75 (18.04) | 27.77 (11.18) | 0.338 | 32.98 (19.33) | 25.07 (8.24) | 0.265 | 0.312 | ||
Knee Posture | Heel Strike | Moving Leg (°) | 5.64 (5.15) | 5.49 (5.64) | 0.862 | 5.42 (5.88) | 5.69 (4.94) | 0.911 | 0.517 |
Anchoring Leg (°) | 11.14 (5.86) | 10.94 (5.10) | 0.776 | 12.92 (4.33) | 9.39 (5.85) | 0.132 | 0.882 | ||
Toe Off | Moving Leg (°) | 46.30 (7.59) | 46.20 (7.30) | 0.939 | 47.58 (5.84) | 45.09 (8.44) | 0.481 | 0.509 | |
Anchoring Leg (°) | 7.67 (5.96) | 8.04 (6.09) | 0.608 | 8.47 (6.49) | 7.32 (5.53) | 0.655 | 0.753 | ||
Ankle Posture | Heel Strike | Moving Leg (°) | 0.42 (4.26) | −2.02 (4.10) | 0.180 | −1.13 (4.64) | −2.22 (3.40) | 0.559 | 0.906 |
Anchoring Leg (°) | 13.34 (2.74) | 13.92 (2.82) | 0.199 | 14.49 (2.40) | 12.87 (2.89) | 0.046 | 0.964 | ||
Toe Off | Moving Leg (°) | −7.45 (6.50) | −7.48 (6.21) | 0.973 | −8.25 (6.40) | −6.78 (6.24) | 0.626 | 0.198 | |
Anchoring Leg (°) | 0.62 (3.72) | 0.90 (3.48) | 0.428 | 0.25 (4.16) | 1.21 (2.96) | 0.564 | 0.216 |
References
- Centers for Disease Control and Prevention Web-Based Injury Statistics Query and Reporting System (WISQARS): Older Adult Fall Prevention. Available online: https://www.cdc.gov/falls/index.html (accessed on 3 May 2022).
- Yang, Y.; Komisar, V.; Shishov, N.; Lo, B.; Korall, A.M.; Feldman, F.; Robinovitch, S.N. The Effect of Fall Biomechanics on Risk for Hip Fracture in Older Adults: A Cohort Study of Video-Captured Falls in Long-Term Care. J. Bone Miner Res. 2020, 35, 1914–1922. [Google Scholar] [CrossRef]
- Lavedán, A.; Viladrosa, M.; Jürschik, P.; Botigué, T.; Nuín, C.; Masot, O.; Lavedán, R. Fear of Falling in Community-Dwelling Older Adults: A Cause of Falls, a Consequence, or Both? PLoS ONE 2018, 13, e0194967. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Dubé, R.; Després, C.; Freitas, A.; Légaré, F. Choosing between Staying at Home or Moving: A Systematic Review of Factors Influencing Housing Decisions among Frail Older Adults. PLoS ONE 2018, 13, e0189266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finlay, J.M.; Meltzer, G.; Cannon, M.; Kobayashi, L.C. Aging in Place During a Pandemic: Neighborhood Engagement and Environments Since the COVID-19 Pandemic Onset. Gerontol. 2022, 62, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Grimmer, M.; Riener, R.; Walsh, C.J.; Seyfarth, A. Mobility Related Physical and Functional Losses Due to Aging and Disease—A Motivation for Lower Limb Exoskeletons. J. NeuroEng. Rehabil. 2019, 16, 2. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Sadigh, S.; Reimers, A.; Andersson, R.; Laflamme, L. Falls and Fall-Related Injuries Among the Elderly: A Survey of Residential-Care Facilities in a Swedish Municipality. J. Commun. Health 2004, 29, 129–140. [Google Scholar] [CrossRef]
- Zhang, Z.; Kapoor, U.; Narayanan, M.; Lovell, N.H.; Redmond, S.J. Design of an Unobtrusive Wireless Sensor Network for Nighttime Falls Detection. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August 2011–3 September 2011; pp. 5275–5278. [Google Scholar] [CrossRef]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.; Lamb, S.E. Interventions for Preventing Falls in Older People Living in the Community. Cochrane Database Syst. Rev. 2012, 2021, CD007146. [Google Scholar] [CrossRef]
- Valipoor, S.; Pati, D.; Kazem-Zadeh, M.; Mihandoust, S.; Mohammadigorji, S. Falls in Older Adults: A Systematic Review of Literature on Interior-Scale Elements of the Built Environment. J. Aging Environ. 2020, 34, 351–374. [Google Scholar] [CrossRef]
- Black, A.A.; Kimlin, J.A.; Wood, J.M. Stepping Accuracy and Visuomotor Control among Older Adults: Effect of Target Contrast and Refractive Blur. Ophthalmic Physiol. Opt. 2014, 34, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Jagnoor, J.; Keay, L.; Jaswal, N.; Kaur, M.; Ivers, R. A Qualitative Study on the Perceptions of Preventing Falls as a Health Priority among Older People in Northern India. Inj. Prev. 2014, 20, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Matthis, J.S.; Barton, S.L.; Fajen, B.R. The Critical Phase for Visual Control of Human Walking over Complex Terrain. Proc. Natl. Acad. Sci. USA 2017, 114, E6720–E6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietdyk, S.; Rhea, C.K. The Effect of the Visual Characteristics of Obstacles on Risk of Tripping and Gait Parameters during Locomotion: Obstacle Characteristics and Risk of Tripping. Ophthalmic Physiol. Opt. 2011, 31, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Muir, B.C.; Haddad, J.M.; Heijnen, M.J.H.; Rietdyk, S. Proactive Gait Strategies to Mitigate Risk of Obstacle Contact Are More Prevalent with Advancing Age. Gait Posture 2015, 41, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.J.; Hollands, M.A. Evidence for a Link between Changes to Gaze Behaviour and Risk of Falling in Older Adults during Adaptive Locomotion. Gait Posture 2006, 24, 288–294. [Google Scholar] [CrossRef]
- Montarzino, A.; Robertson, B.; Aspinall, P.; Ambrecht, A.; Findlay, C.; Hine, J.; Dhillon, B. The Impact of Mobility and Public Transport on the Independence of Visually Impaired People. Vis. Impair. Res. 2007, 9, 67–82. [Google Scholar] [CrossRef]
- Laurent, M.; Thomson, J.A. The Role of Visual Information in Control of a Constrained Locomotor Task. J. Mot. Behav. 1988, 20, 17–37. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Gras, L.; Qi, R.; Rizzo, P.; Rea, M.; Rea, M.S. A Novel Night Lighting System for Postural Control and Stability in Seniors. Light. Res. Technol. 2008, 40, 111–124. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Plitnick, B.; Rea, M.S.; Gras, L.Z.; Rea, M.S. Lighting and Perceptual Cues: Effects on Gait Measures of Older Adults at High and Low Risk for Falls. BMC Geriatr 2011, 11, 49. [Google Scholar] [CrossRef]
- Lu, X.; Luo, Y.; Hu, B.; Park, N.-K.; Ahrentzen, S. Testing of path-based visual cues on patterned carpet to assist older adults’ gait in a continuing care retirement community. Exp. Gerontol. 2021, 149, 111307. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, X.; Ahrentzen, S.; Hu, B. Impact of Destination-Based Visual Cues on Gait Characteristics among Adults over 75 Years Old: A Pilot Study. Gait Posture 2021, 87, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Izsó, L.; Laufer, L.; Suplicz, S. Effects of Dynamic Lighting on the Visual Performance of Older Adults. Light. Res. Technol. 2009, 41, 361–370. [Google Scholar] [CrossRef]
- Money, A.G.; Atwal, A.; Boyce, E.; Gaber, S.; Windeatt, S.; Alexandrou, K. Falls Sensei: A Serious 3D Exploration Game to Enable the Detection of Extrinsic Home Fall Hazards for Older Adults. BMC Med. Inf. Decis. Mak. 2019, 19, 85. [Google Scholar] [CrossRef]
- Lu, X.; Luo, Y.; Hu, B. Exploring Older Adults’ Nighttime Trips to the Bathroom Under Different Lighting Conditions: An Exploratory Field Study. HERD 2022, 15, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and Initial Validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delbaere, K.; Close, J.C.T.; Mikolaizak, A.S.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. The Falls Efficacy Scale International (FES-I). A Comprehensive Longitudinal Validation Study. Age Ageing 2010, 39, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Schepers, M.; Giuberti, M.; Bellusci, G. Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing. Xsens. Technol. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Murphy, J.; Isaacs, B. The Post-Fall Syndrome. Gerontology 1982, 28, 265–270. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, H.; Chen, Y.; Giang, W.C.W.; Hu, B. Influences of Smartphone Operation on Gait and Posture During Outdoor Walking Task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2020, 64, 1723–1727. [Google Scholar] [CrossRef]
- Mariani, B.; Rouhani, H.; Crevoisier, X.; Aminian, K. Quantitative Estimation of Foot-Flat and Stance Phase of Gait Using Foot-Worn Inertial Sensors. Gait Posture 2013, 37, 229–234. [Google Scholar] [CrossRef]
- Chen, H.; Schall, M.C.; Fethke, N. Effects of Movement Speed and Magnetic Disturbance on the Accuracy of Inertial Measurement Units. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: New Jersey, NJ, USA, 2009. [Google Scholar]
- Winter, D.A.; Sidwall, H.G.; Hobson, D.A. Measurement and Reduction of Noise in Kinematics of Locomotion. J. Biomech. 1974, 7, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, L.V.; Rebula, J.R.; Kuo, A.D.; Adamczyk, P.G. Influence of Contextual Task Constraints on Preferred Stride Parameters and Their Variabilities during Human Walking. Med. Eng. Phys. 2015, 37, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohnsack-McLagan, N.K.; Cusumano, J.P.; Dingwell, J.B. Adaptability of Stride-to-Stride Control of Stepping Movements in Human Walking. J. Biomech. 2016, 49, 229–237. [Google Scholar] [CrossRef]
- Du, W.; Wilmut, K.; Barnett, A.L. Level Walking in Adults with and without Developmental Coordination Disorder: An Analysis of Movement Variability. Hum. Mov. Sci. 2015, 43, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Koo, S.; Lee, K.M.; Cha, Y.J. Plantar-Flexion of the Ankle Joint Complex in Terminal Stance Is Initiated by Subtalar Plantar-Flexion: A Bi-Planar Fluoroscopy Study. Gait Posture 2015, 42, 424–429. [Google Scholar] [CrossRef]
- Titchenal, M.R.; Asay, J.L.; Favre, J.; Andriacchi, T.P.; Chu, C.R. Effects of High Heel Wear and Increased Weight on the Knee during Walking: HIGH HEELS AND KNEE LOADING. J. Orthop. Res. 2015, 33, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013; ISBN 978-1-134-74270-7. [Google Scholar]
- Pavol, M.J.; Owings, T.M.; Foley, K.T.; Grabiner, M.D. Gait Characteristics as Risk Factors for Falling From Trips Induced in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1999, 54, M583–M590. [Google Scholar] [CrossRef] [Green Version]
- Larsson, J.; Ekvall Hansson, E.; Miller, M. Increased Double Support Variability in Elderly Female Fallers with Vestibular Asymmetry. Gait Posture 2015, 41, 820–824. [Google Scholar] [CrossRef]
- Wuehr, M.; Schniepp, R.; Schlick, C.; Huth, S.; Pradhan, C.; Dieterich, M.; Brandt, T.; Jahn, K. Sensory Loss and Walking Speed Related Factors for Gait Alterations in Patients with Peripheral Neuropathy. Gait Posture 2014, 39, 852–858. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; McGinley, J.L.; Srikanth, V.K. Ageing and Gait Variability—A Population-Based Study of Older People. Age Ageing 2010, 39, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; Martin, K.L.; McGinley, J.L.; Sanders, L.M.; Srikanth, V.K. Gait, Gait Variability and the Risk of Multiple Incident Falls in Older People: A Population-Based Study. Age Ageing 2011, 40, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, K.L.; Blizzard, L.; Wood, A.G.; Srikanth, V.; Thomson, R.; Sanders, L.M.; Callisaya, M.L. Cognitive Function, Gait, and Gait Variability in Older People: A Population-Based Study. J. Gerontol. Ser. A 2013, 68, 726–732. [Google Scholar] [CrossRef]
- Jayakody, O.; Breslin, M.; Beare, R.; Siejka, T.P.; Gujjari, S.; Srikanth, V.K.; Blumen, H.M.; Callisaya, M.L. The Association between Simple Reaction Time Variability and Gait Variability: The Tasmanian Study of Cognition and Gait. Gait Posture 2021, 89, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O. Gait Analysis in Demented Subjects: Interests and Perspectives. Neuropsychiatr. Dis. Treat. 2008, 4, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Lu, X.; Grimaldi, N.S.; Ahrentzen, S.; Hu, B. Effects of Light Conditions and Falls Concerns on Older Adults’ Gait Characteristics: A Preliminary Study. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 1332–1336. [Google Scholar] [CrossRef]
- Vlutters, M.; Van Asseldonk, E.H.F.; Van der Kooij, H. Center of Mass Velocity Based Predictions in Balance Recovery Following Pelvis Perturbations during Human Walking. J. Exp. Biol. 2016, 219, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Pai, Y.-C. Can Sacral Marker Approximate Center of Mass during Gait and Slip-Fall Recovery among Community-Dwelling Older Adults? J. Biomech. 2014, 47, 3807–3812. [Google Scholar] [CrossRef] [Green Version]
- Townsend, M.A. Biped Gait Stabilization via Foot Placement. J. Biomech. 1985, 18, 21–38. [Google Scholar] [CrossRef]
- Lugade, V.; Lin, V.; Chou, L.-S. Center of Mass and Base of Support Interaction during Gait. Gait Posture 2011, 33, 406–411. [Google Scholar] [CrossRef]
- Reelick, M.F.; van Iersel, M.B.; Kessels, R.P.C.; Rikkert, M.G.M.O. The Influence of Fear of Falling on Gait and Balance in Older People. Age Ageing 2009, 38, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshpande, N.; Metter, J.E.; Lauretani, F.; Bandinelli, S.; Ferrucci, L. Interpreting Fear of Falling in the Elderly: What Do We Need to Consider? J. Geriatr. Phys. Ther. 2009, 32, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binda, S.M.; Culham, E.G.; Brouwer, B. Balance, Muscle Strength, and Fear of Falling in Older Adults. Exp. Aging Res. 2003, 29, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Bjerk, M.; Brovold, T.; Skelton, D.A.; Bergland, A. Associations between Health-Related Quality of Life, Physical Function and Fear of Falling in Older Fallers Receiving Home Care. BMC Geriatr. 2018, 18, 253. [Google Scholar] [CrossRef]
Characteristics | FoF | ||
---|---|---|---|
Low | High | p-Value | |
Numbers (Total) | 7 | 8 | - |
FES-I Score | 19.71 (1.25) | 30.75 (7.13) | 0.001 |
Stature (cm) | 161.49 (6.53) | 169.08 (10.36) | 0.120 |
Shoe Length (cm) | 27.96 (1.85) | 29.54 (1.88) | 0.126 |
Type | Variables | Target | FoF | Target × FoF | |||||
---|---|---|---|---|---|---|---|---|---|
Normal | Salient | p-Value | Low | High | p-Value | p-Value | |||
Gait Pattern—Spatial | Walking Speed (m/s) | 0.71 (0.20) | 0.74 (0.20) | 0.034 | 0.81 (0.19) | 0.64 (0.18) | 0.104 | 0.430 | |
Stride Length (m) | 0.82 (0.22) | 0.85 (0.22) | 0.091 | 0.91 (0.22) | 0.77 (0.20) | 0.239 | 0.422 | ||
Stride Width (m) | 0.21 (0.03) | 0.21 (0.04) | 0.130 | 0.20 (0.03) | 0.22 (0.04) | 0.226 | 0.205 | ||
Gait Pattern—Temporal | Stride Time (s) | 1.24 (0.15) | 1.24 (0.14) | 0.845 | 1.18 (0.11) | 1.29 (0.15) | 0.114 | 0.841 | |
Double Support (%) | 37.86 (7.89) | 36.75 (6.85) | 0.285 | 35.56 (7.90) | 38.84 (6.56) | 0.366 | 0.370 | ||
Stride Time Variability | 8.62 (3.64) | 7.85 (3.74) | 0.403 | 7.74 (3.62) | 8.66 (3.74) | 0.486 | 0.230 | ||
Double Support Variability | 19.92 (5.44) | 16.90 (5.70) | 0.022 | 19.94 (5.90) | 17.07 (5.31) | 0.138 | 0.952 | ||
Hip Posture | Heel Strike | Moving Leg (°) | 24.56 (6.07) | 23.50 (5.86) | 0.041 | 23.90 (5.37) | 24.15 (6.48) | 0.932 | 0.003 |
Anchoring Leg (°) | 0.57 (5.16) | −1.18 (6.40) | 0.007 | −2.27 (6.54) | 1.42 (4.57) | 0.142 | 0.069 | ||
Toe Off | Moving Leg (°) | 14.25 (6.48) | 12.61 (6.14) | 0.015 | 11.21 (6.35) | 15.37 (5.70) | 0.139 | 0.127 | |
Anchoring Leg (°) | 15.14 (6.02) | 14.05 (6.24) | 0.071 | 14.30 (6.26) | 14.86 (6.06) | 0.844 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Lu, X.; Grimaldi, N.S.; Ahrentzen, S.; Hu, B. Salient Targets and Fear of Falling Changed the Gait Pattern and Joint Kinematic of Older Adults. Sensors 2022, 22, 9352. https://doi.org/10.3390/s22239352
Luo Y, Lu X, Grimaldi NS, Ahrentzen S, Hu B. Salient Targets and Fear of Falling Changed the Gait Pattern and Joint Kinematic of Older Adults. Sensors. 2022; 22(23):9352. https://doi.org/10.3390/s22239352
Chicago/Turabian StyleLuo, Yue, Xiaojie Lu, Nicolas S. Grimaldi, Sherry Ahrentzen, and Boyi Hu. 2022. "Salient Targets and Fear of Falling Changed the Gait Pattern and Joint Kinematic of Older Adults" Sensors 22, no. 23: 9352. https://doi.org/10.3390/s22239352
APA StyleLuo, Y., Lu, X., Grimaldi, N. S., Ahrentzen, S., & Hu, B. (2022). Salient Targets and Fear of Falling Changed the Gait Pattern and Joint Kinematic of Older Adults. Sensors, 22(23), 9352. https://doi.org/10.3390/s22239352