Sensitivity Optimization of Surface Acoustic Wave Yarn Tension Sensor Based on Elastic Beam Theory
Abstract
:1. Introduction
2. Principle Analysis
2.1. The Working Principle of SAW Yarn Tension Sensor
2.2. Sensitivity Analysis of SAW Yarn Tension Sensor Based on Elastic Beam Theory
3. Sensitivity Optimization Based on Elastic Beam Theory
4. The Experimental Verification
4.1. Design of the Simply Supported Beam SAW Sensor
4.2. Experiment and Result Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Ma, Q.; Tan, Y.; Liao, H.; Lu, C.; Tang, F.; Liu, X.; Fu, Y.; Wang, X.; Gan, X. Non-contact detection of polyester filament yarn tension in the spinning process by the laser Doppler vibrometer method. Text. Res. J. 2022, 92, 919–928. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, R.; Amer, M. Yarn tension control technique for improving polyester soft winding process. Sci. Rep-UK. 2021, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.; Lund, A.; Jonasson, C.; Johansson, C.; Hagström, B. Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A. Phys. 2013, 201, 477–486. [Google Scholar] [CrossRef]
- Chen, X.L.; Mei, S.Q.; Chen, X.B. Non-Contact Measurement of Yarn Tension in Spinning Process. Appl. Mech. Mater. 2014, 722, 367–372. [Google Scholar] [CrossRef]
- Liu, S.B.; Lu, W.K. Manufacturing error correction model of the wavelet transform processor using surface acoustic wave devices. IEICE Electron Expr. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.K.; Gao, L.L.; Liu, Q.H. Electrode-width-weighted wavelet transform processor using SAW devices. Microelectron Int. 2017, 34, 75–83. [Google Scholar] [CrossRef]
- Liu, S.B.; Lu, W.K.; Zhu, C.C. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application. Ultrasonics 2017, 81, 81–85. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, W.K.; Zhang, G.A. Study of low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Ultrasonics 2013, 53, 992–997. [Google Scholar] [CrossRef]
- Lu, W.K.; Gao, L.L.; Zhang, J.D. A novel electrode-area-weighted method of implementing wavelet transform processor with surface acoustic wave device. Int. J. Circ. Theor. Appl. 2016, 44, 2134–2146. [Google Scholar] [CrossRef]
- Lu, W.K.; Zhu, C.C.; Liu, Q.H.; Zhang, J.D. Implementing wavelet inverse-transform processor with surface acoustic wave device. Ultrasonics 2013, 53, 447–454. [Google Scholar] [CrossRef]
- Nilsson, E.; Lund, A.; Jonasson, C.; Johansson, C.; Hagström, B. Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sensor Actuat. B-Chem. 2019, 287, 241–249. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Tomar, M.; Gupta, V. Highly sensitive Love wave acoustic biosensor for uric acid. Sensor Actuat. B-Chem. 2018, 261, 169–177. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, Y.J. Implementation of guiding layers of surface acoustic wave devices: A review. Biosens. Bioelectron. 2018, 99, 500–512. [Google Scholar] [CrossRef]
- Liu, S.B.; Xue, P.; Lu, J.Y.; Lu, W.K. Fitting analysis and research of measured data of SAW yarn tension sensor based on PSO–SVR model. Ultrasonics 2021, 116, 106511. [Google Scholar] [CrossRef]
- Lei, B.; Lu, W.; Zhu, C.; Liu, Q.; Zhang, H. Optimization of Sensitivity Induced by Substrate Strain Rate for Surface Acoustic Wave Yarn Tension Sensor. IEEE Sens. J. 2015, 15, 4769–4776. [Google Scholar] [CrossRef]
- Lei, B.B.; Lu, W.K.; Mian, Z.B.; Bao, W.X. Effect of IDT position par-ameters on SAW yarn tension sensor sensitivity. Meas. Control. 2020, 53, 2055–2062. [Google Scholar] [CrossRef]
- Lu, X.Z.; Lu, W.K.; Zhu, C.C. Compensated SAW Yarn Tension Sensor. IEEE Trans. Instrum. Meas. 2014, 63, 3162–3168. [Google Scholar] [CrossRef]
- Lu, W.; Lu, X.; Zhu, C.; Liu, Q.; Zhang, H. Solving three key problems of the SAW yarn tension sensor. IEEE Trans. Electron. Devices 2012, 59, 2853–2855. [Google Scholar] [CrossRef]
- Lu, W.K.; Feng, Y.; Zhu, C.C.; Zhen, J.L. Temperature compensation of the SAW yarn tension sensor. Ultrasonics 2017, 76, 87–91. [Google Scholar] [CrossRef]
- Ding, Y.; Lu, W.K.; Zhang, Y.H. Study on the Practical Application of Surface Acoustic Wave Yarn Tension Sensor. IEEE Trans. Ind. Electron. 2022, 69, 13781–13790. [Google Scholar] [CrossRef]
- Lei, B.B.; Lu, W.K.; Zhu, C.C.; Liu, Q.H.; Zhang, H.X. A novel optimal sensitivity design scheme for yarn tension sensor using surface acoustic wave device. Ultrasonics 2014, 54, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Lu, Z.X.; Lu, W.K. Study of the Doubly Clamped Beam Yarn Tension Sensor Based on the Surface Acoustic Wave. IEEE Trans. Ind. Electron. 2019, 66, 3256–3264. [Google Scholar] [CrossRef]
- Logan, D.L. A First Course in the Finite Element Method, 4th ed.; Cengage Learning: Stamford, CT, USA, 2007; pp. 748–754. [Google Scholar]
- Štalmach, O.; Sapietová, A.; Dekýš, V.; Šulka, P.; Gajdoš, L. Conversion of data from the laser scanner to the Ansys Workbench. MATEC Web Conf. 2019, 254, 02003. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zhang, K.; Ye, Z.; Liu, C.; Lu, K.; Wang, L. Influence of Temperature on the Natural Vibration Characteristics of Simply Supported Reinforced Conc-rete Beam. Sensors 2021, 21, 4242. [Google Scholar] [CrossRef]
- Gautam, B.G.; Xiang, Y.; Liao, X.; Qiu, Z.; Guo, S. Experi-mental Investigation of a Slip in High-Performance Steel-Concrete Small Box Girder with Different Combinations of Group Studs. Materials 2019, 12, 2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Ren, W.X.; Wang, Z.C. Deflection Estimation of Bending Beam Structures Using Fiber Bragg Grating Strain Sensors. Adv. Struct. Eng. 2015, 18, 395–403. [Google Scholar] [CrossRef]
- Trahair, N.S. Inelastic lateral buckling of steel cantilevers. Eng. Struct. 2020, 208, 109918. [Google Scholar] [CrossRef]
- Megson, T.H.G. Structural and Stress Analysis, 4th ed.; Butterworth-Heinemann Elsevier Ltd: Oxford, UK, 2019; pp. 337–388. [Google Scholar]
- Kurt, O.; Arslan, O. A general accuracy measure for quality of elliptic sections fitting. Measurement 2019, 145, 640–647. [Google Scholar] [CrossRef]
Piezoelectric Substrate | Material | Quartz |
---|---|---|
Size | Length = 30 mm, Width = 6 mm, Height = 0.5 mm | |
IDTs | Electrode material | Aluminum |
Central frequency of the design | 60.0 MHz | |
Pairs number of interdigital bars in the input IDT | 72 | |
pairs number of interdigital bars in the output IDT | 24 | |
Distance between input IDT and output IDT | 2 mm | |
Width of interdigital bar | 3.289583 μm, 9.868750 μm | |
Spacing of interdigital bars | 6.579167 μm | |
Wavelength | 52.633333 μm |
F (N) | 0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 |
---|---|---|---|---|---|---|---|
Δf (kHz) | 0 | 1.568 | 3.233 | 4.867 | 6.464 | 8.018 | 9.626 |
F (N) | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 |
Δf (kHz) | 11.327 | 13.015 | 14.725 | 16.323 | 17.91 | 19.573 | 21.226 |
F (N) | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 |
Δf (kHz) | 22.912 | 24.491 | 26.191 | 27.879 | 29.478 | 31.08 | 32.714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Gao, L.; Lu, W. Sensitivity Optimization of Surface Acoustic Wave Yarn Tension Sensor Based on Elastic Beam Theory. Sensors 2022, 22, 9368. https://doi.org/10.3390/s22239368
Ding Y, Gao L, Lu W. Sensitivity Optimization of Surface Acoustic Wave Yarn Tension Sensor Based on Elastic Beam Theory. Sensors. 2022; 22(23):9368. https://doi.org/10.3390/s22239368
Chicago/Turabian StyleDing, Yong, Lili Gao, and Wenke Lu. 2022. "Sensitivity Optimization of Surface Acoustic Wave Yarn Tension Sensor Based on Elastic Beam Theory" Sensors 22, no. 23: 9368. https://doi.org/10.3390/s22239368
APA StyleDing, Y., Gao, L., & Lu, W. (2022). Sensitivity Optimization of Surface Acoustic Wave Yarn Tension Sensor Based on Elastic Beam Theory. Sensors, 22(23), 9368. https://doi.org/10.3390/s22239368