Using Fuzzy Logic to Increase Accuracy in Mango Maturity Index Classification: Approach for Developing a Portable Near-Infrared Spectroscopy Device
Abstract
:1. Introduction
2. Device Hardware and Software Development
3. Materials and Methods
3.1. Dataset
3.2. Spectral Acquisition
3.3. Spectral Transformation
3.4. Chemometrics
3.5. Fuzzy Logic
4. Results and Discussion
4.1. Destructive Test Results
4.2. Non-Destructive Test Results
4.3. Direct Approach Model
4.4. Indirect Approach Model
4.5. Application of Fuzzy Logic
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivakumar, D.; Jiang, Y.; Yahia, E.M. Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Res. Int. 2011, 44, 1254–1263. [Google Scholar] [CrossRef]
- Plazzotta, S.; Manzocco, L.; Nicoli, M.C. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 2017, 63, 51–59. [Google Scholar] [CrossRef]
- Sato, M.; Ikram, M.M.M.; Pranamuda, H.; Agusta, W.; Putri, S.P. Characterization of five Indonesian mangoes using gas chromatography-mass spectrometry-based metabolic profiling and sensory evaluation. J. Biosci. Bioeng. 2021, 132, 613–620. [Google Scholar] [CrossRef]
- Cortés, V.; Ortiz, C.; Aleixos, N.; Blasco, J.; Cubero, S.; Talens, P. A new internal quality index for mango and its prediction by external visible and near-infrared reflection spectroscopy. Postharvest Biol. Technol. 2016, 118, 148–158. [Google Scholar] [CrossRef]
- Tucker, G.; Yin, X.; Zhang, A.; Wang, M.; Zhu, Q.; Liu, X.; Xie, X.; Chen, K.; Grierson, D. Ethylene and fruit softening. Food Qual. Saf. 2017, 1, 253–267. [Google Scholar] [CrossRef]
- Jha, S.N.; Kingsly, A.R.P.; Chopra, S. Physical and mechanical properties of mango during growth and storage for determination of maturity. J. Food Eng. 2006, 72, 73–76. [Google Scholar] [CrossRef]
- Thanaraj, T.; Terry, L.A.; Bessant, C. Chemometric profiling of pre-climacteric Sri Lankan mango fruit (Mangifera indica L.). Food Chem. 2009, 112, 786–794. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B.; Owens, G. Prediction of mango eating quality at harvest using short-wave near infrared spectrometry. Postharvest Biol. Technol. 2007, 43, 326–334. [Google Scholar] [CrossRef]
- Anderson, N.T.; Walsh, K.B.; Subedi, P.P.; Hayes, C.H. Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. Postharvest Biol. Technol. 2020, 168, 111202. [Google Scholar] [CrossRef]
- Neto, J.P.D.S.; Assis, M.W.D.D.; Casagrande, I.P.; Júnior, L.C.C.; Teixeira, G.H.D.A. Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biol. Technol. 2017, 130, 75–80. [Google Scholar] [CrossRef]
- Ou, F.; Klinken, A.V.; Ševo, P.; Petruzzella, M.; Li, C.; Elst, D.M.J.V.; Hakkel, K.D.; Pagliano, F.; Veldhoven, R.P.J.V.; Fiore, A. Handheld NIR Spectral Sensor Module Based on a Fully-Integrated Detector Array. Sensors 2022, 22, 7027. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Escárate, P.; Farias, G.; Naranjo, P.; Zoffoli, J.P. Estimation of Soluble Solids for Stone Fruit Varieties Based on Near-Infrared Spectra Using Machine Learning Techniques. Sensors 2022, 22, 6081. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhou, Y.P.; Tang, L.J.; Wu, H.L.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration. Anal. Chim. Acta 2008, 616, 138–143. [Google Scholar] [CrossRef]
- Torniainen, J.; Afara, I.O.; Prakash, M.; Sarin, J.K.; Stenroth, L.; Töyräs, J. Opensource python module for automated preprocessing of near infrared spectroscopic data. Anal. Chim. Acta 2020, 1108, 1–9. [Google Scholar] [CrossRef]
- Munawar, A.A.; Zulfahrizal; Meilina, H.; Pawelzik, E. Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches. Comput. Electron. Agric. 2022, 193, 106657. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.; Harchioui, N.E. Improved prediction of ‘Kent’ mango firmness during ripening by near-infrared spectroscopy supported by interval partial least square regression. Infrared Phys. Technol. 2020, 110, 103459. [Google Scholar] [CrossRef]
- Ferrara, G.; Melle, A.; Marcotuli, V.; Botturi, D.; Fawole, O.A.; Mazzeo, A. The prediction of ripening parameters in Primitivo wine grape cultivar using a portable NIR device. J. Food Compos. Anal. 2022, 114, 104836. [Google Scholar] [CrossRef]
- Said, M.; Wahba, A.; Khalil, D. Semi-supervised deep learning framework for milk analysis using NIR spectrometers. Chemom. Intell. Lab. Syst. 2022, 228, 104619. [Google Scholar] [CrossRef]
- Mishra, P.; Passos, D. A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter prediction in mango fruit. Chemom. Intell. Lab. Syst. 2021, 212, 104287. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Zeb, A.; Qureshi, W.S.; Malik, A.U.; Tiwana, M.; Walsh, K.; Amin, M.; Alasmary, W.; Alanazi, E. Mango maturity classification instead of maturity index estimation: A new approach towards handheld NIR spectroscopy. Infrared Phys. Technol. 2021, 115, 103639. [Google Scholar] [CrossRef]
- Gerretzen, J.; Szymańska, E.; Bart, J.; Davies, A.N.; Manen, H.J.v.; Heuvel, E.R.v.d.; Jansen, J.J.; Buydens, L.M.C. Boosting model performance and interpretation by entangling preprocessing selection and variable selection. Anal. Chim. Acta 2016, 938, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Roger, J.M.; Boulet, J.C.; Zeaiter, M.; Rutledge, D.N. Pre-Processing Methods. In Comprehensive Chemometrics, 2nd ed.; Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier BV: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Zhang, G.; Tuo, X.; Zhai, S.; Zhu, X.; Luo, L.; Zeng, X. Near-Infrared Spectral Characteristic Extraction and Qualitative Analysis Method for Complex Multi-Component Mixtures Based on TRPCA-SVM. Sensors 2022, 22, 1654. [Google Scholar] [CrossRef] [PubMed]
- Martyna, A.; Enżyk, A.; Damin, A.; Michalska, A.; Martra, G.; Alladio, E.; Zadora, G. Improving discrimination of Raman spectra by optimising preprocessing strategies on the basis of the ability to refine the relationship between variance components. Chemom. Intell. Lab. Syst. 2020, 202, 104029. [Google Scholar] [CrossRef]
- Yang, Y.; Yue, X.; Zhang, Y. Optimal processing sequence and method combination of linear resampling and spectral shaping in swept-source optical coherence tomography. Opt. Commun. 2021, 484, 126677. [Google Scholar] [CrossRef]
- Bi, Y.; Yuan, K.; Xiao, W.; Wu, J.; Shi, C.; Xia, J.; Chu, G.; Zhang, G.; Zhou, G. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Anal. Chim. Acta 2016, 909, 30–40. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, W.; Massart, D.L. The robust normal variate transform for pattern recognition with near-infrared data. Anal. Chim. Acta 1999, 382, 87–103. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; Ramon, H.; Baerdemaeker, J.D. Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy. Biosyst. Eng. 2007, 96, 427–433. [Google Scholar] [CrossRef]
- Nassiri, S.M.; Tahavoor, A.; Jafari, A. Fuzzy logic classification of mature tomatoes based on physical properties fusion. Inf. Process. Agric 2022, 9, 547–555. [Google Scholar] [CrossRef]
- Zyluk, A.; Ku’zma, K.; Grzesik, N.; Zieja, M.; Tomaszewska, J. Fuzzy Logic in Aircraft Onboard Systems Reliability Evaluation—A New Approach. Sensors 2021, 21, 7913. [Google Scholar] [CrossRef]
- Magalhães, B.; Gaspar, P.D.; Corceiro, A.; João, L.; Bumba, C. Fuzzy Logic Decision Support System to Predict Peaches Marketable Period at Highest Quality. Climate 2022, 10, 29. [Google Scholar] [CrossRef]
- Paul, T.K.; Jalil, T.I.; Parvez, M.S.; Repon, M.R.; Hossain, I.; Alim, M.A.; Islam, T.; Jalil, M.A. A Prognostic Based Fuzzy Logic Method to Speculate Yarn Quality Ratio in Jute Spinning Industry. Textiles 2022, 2, 422–435. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Prodanović, R.; Vladisavljević, R.; Suzić, R. Market Assessment of Pear Varieties in Serbia Using Fuzzy CRADIS and CRITIC Methods. Agriculture 2022, 12, 139. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.-J.; Bravo-Sánchez, M.-G.; Padilla-Medina, J.-A.; Vázquez-Vera, J.L.; Guevara-González, R.-G.; García-Rodríguez, F.-J.; Barranco-Gutiérrez, A.-I. A Maturity Estimation of Bell Pepper (Capsicum annuum L.) by Artificial Vision System for Quality Control. Appl. Sci. 2020, 10, 5097. [Google Scholar] [CrossRef]
- Cárdenas, E.L.M.; Zapata-Zapata, A.D.; Kim, D. Modeling Dark Fermentation of Coffee Mucilage Wastes for Hydrogen Production: Artificial Neural Network Model vs. Fuzzy Logic Model. Energies 2020, 13, 1663. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiang, S.; Zhang, H.; Zhang, H.; Wu, C.; Tang, Z.; Wang, J.; Xu, J. Sensory Quality Evaluation of Korla Pear from Different Orchards and Analysis of Their Primary and Volatile Metabolites. Molecules 2020, 25, 5567. [Google Scholar] [CrossRef] [PubMed]
- Crnogorac, M.; Tanasijević, M.; Danilović, D.; Maričić, V.K.; Leković, B. Selection of Artificial Lift Methods: A Brief Review and New Model Based on Fuzzy Logic. Energies 2020, 13, 1758. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1999, 100, 9–34. [Google Scholar] [CrossRef]
- Sun, Z.; Finnie, G. A fuzzy logic approach to experience-based reasoning. Int. J. Intell. Syst. 2007, 22, 867–889. [Google Scholar] [CrossRef]
Maturity Index | 80% | 85% | 90% | 95% | 100% |
---|---|---|---|---|---|
Days after full bloom (DAF) | 90–95 | 105 | 108 | 112 | 115 |
Color of flesh | Butter yellow around the seeds | Evenly butter yellow | Yellow orange | Orange | Reddish yellow |
Taste | Sweet, sour, fresh | Sweet, sour, fresh | Sweet, fresh | Sweet, fresh | Sweet, fresh |
shelf life (days) | 21–25 | 14–17 | 7 | 5 | 1 |
Method | Operation | Parameter | Value |
---|---|---|---|
Clipping | CLIP | threshold | Clipping |
Scatter Correction | SNV | ||
RNV | iqr | 75–25, 90–10 | |
LSNV | |||
MSC | |||
EMSC | |||
NORML | |||
DETREND | bp | 0 | |
BASELINE | |||
Smoothing | SMOOTH | filter_win | 5, 7, 9 |
window_type | hamming | ||
Derivative | SAVGOL | filter_win | 5, 7, 11, 31, 71 |
poly_order | 3 | ||
deriv_order | 1, 2 | ||
Resampling | RESAMPLE | rasio | 0.7 |
Maturity Index (%) | TA (%) | SSC (brix) | Firmness (kgf) | Starch (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
80 (n = 139) | 0.8 | 2.23 | 1.11 | 0.31 | 5.9 | 9.7 | 8.456 | 0.82 | 3.6 | 4.4 | 3.76 | 0.19 | 7.23 | 10.3 | 7.58 | 0.75 |
85 (n = 140) | 0.53 | 0.81 | 0.67 | 0.11 | 9.5 | 15 | 11.26 | 1.16 | 3 | 3.6 | 3.47 | 0.09 | 5.3 | 7.19 | 6.52 | 0.65 |
90 (n = 140) | 0.44 | 0.56 | 0.49 | 0.03 | 12.3 | 19.2 | 16.19 | 2.31 | 2.9 | 3.8 | 3.12 | 0.20 | 3.96 | 4.97 | 4.49 | 0.21 |
95 (n = 139) | 0.36 | 0.46 | 0.42 | 0.03 | 18 | 19.7 | 19.15 | 0.51 | 1.8 | 2.9 | 2.13 | 0.32 | 2.01 | 3.26 | 2.31 | 0.45 |
100 (n = 138) | 0.19 | 0.38 | 0.33 | 0.05 | 19.5 | 21.9 | 20.21 | 0.65 | 0.6 | 1.9 | 1.34 | 0.39 | 0.89 | 1.94 | 1.59 | 0.36 |
Maturity Index (%) | TA (%) | SSC (brix) | Firmness (kgf) | Starch (%) |
---|---|---|---|---|
80 | >0.8 | <9.5 | >3.6 | >7.2 |
85 | 0.55–0.8 | 9.5–13.5 | 3.4–3.6 | 5–7.2 |
90 | 0.45–0.55 | 13.5–19 | 2.9–3.4 | 3.5–5 |
95 | 0.37–0.45 | 19–19.6 | 1.8–2.9 | 1.95–3.5 |
100 | <0.37 | >19.6 | <1.8 | <1.95 |
Classification Testing | |||||
---|---|---|---|---|---|
SVM | LDA | kNN | MLP | DT | |
NONE | 58.57% | 74.29% | 32.86% | 20.00% | 22.86% |
Transformation spectra | 61.43% | 91.43% | 51.43% | 62.86% | 51.42% |
Best operation | CLIP MSC RESAMPLE SMOOTH | SAVGOL | CLIP DETREND RNV SMOOTH | CLIP DETREND MSC RESAMPLE SAVGOL | CLIP DETREND MSC SAVGOL |
TA | SSC | Firmness | Starch | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
NONE | SVM | 0.561 | 0.641 | 0.617 | 2.893 | 0.561 | 0.641 | 0.621 | 1.564 |
PLS (86) | 0.629 | 0.171 | 0.852 | 1.798 | 0.770 | 0.464 | 0.890 | 0.843 | |
RF | 0.107 | 0.265 | 0.252 | 4.046 | 0.237 | 0.845 | 0.232 | 2.224 | |
LR | 0.632 | 0.170 | 0.870 | 1.685 | 0.738 | 0.495 | 0.900 | 0.804 | |
Transform | SVM | 0.529 | 0.193 | 0.746 | 2.358 | 0.602 | 0.610 | 0.658 | 1.485 |
PLS (86) | 0.694 | 0.155 | 0.920 | 1.326 | 0.840 | 0.387 | 0.931 | 0.668 | |
RF | 0.629 | 0.171 | 0.711 | 2.512 | 0.539 | 0.656 | 0.604 | 1.597 | |
LR | 0.693 | 0.155 | 0.918 | 1.341 | 0.832 | 0.396 | 0.929 | 0.675 | |
Best operation tranformation spectra | BASELINE CLIP NORML RESAMPLE SAVGOL | CLIP DETREND NORML RNV SAVGOL | CLIP DETREND EMSC NORML SMOOTH | CLIP DETREND EMSC NORML RESAMPLE SAVGOL |
PLS | Predict | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TA | SSC | Firmness | Starch | ||||||||||||||||||
80% | 85% | 90% | 95% | 100% | 80% | 85% | 90% | 95% | 100% | 80% | 85% | 90% | 95% | 100% | 80% | 85% | 90% | 95% | 100% | ||
Actual | 80% | 14 | 9 | 5 | 13 | 1 | 10 | 4 | |||||||||||||
85% | 6 | 10 | 16 | 6 | 4 | 6 | 5 | 11 | |||||||||||||
90% | 3 | 4 | 4 | 3 | 1 | 13 | 12 | 2 | 1 | 13 | |||||||||||
95% | 8 | 3 | 2 | 5 | 3 | 5 | 4 | 9 | 1 | 6 | 6 | ||||||||||
100% | 1 | 4 | 8 | 3 | 1 | 9 | 2 | 11 | 5 | 8 |
Algorithm | SVM | LDA | KNN | MLP | DT |
---|---|---|---|---|---|
Accuracy | 80% | 58, 57% | 80% | 85, 71% | 68, 57% |
Firmness | H | M | L | |||||||
---|---|---|---|---|---|---|---|---|---|---|
TA | SSC/Starch | H | M | L | H | M | L | H | M | L |
H | H | 80% | 90% | 95% | 80% | 90% | 95% | 80% | 90% | 95% |
M | 80% | 85% | 95% | 80% | 85% | 95% | 80% | 85% | 95% | |
L | 80% | 80% | 95% | 80% | 85% | 95% | 80% | 85% | 95% | |
M | H | 85% | 90% | 95% | 85% | 90% | 95% | 85% | 95% | 100% |
M | 85% | 85% | 95% | 85% | 95% | 95% | 85% | 85% | 95% | |
L | 80% | 85% | 95% | 80% | 85% | 95% | 80% | 85% | 95% | |
L | H | 85% | 90% | 95% | 85% | 95% | 95% | 85% | 100% | 100% |
M | 85% | 90% | 95% | 85% | 90% | 95% | 85% | 95% | 95% | |
L | 80% | 85% | 95% | 80% | 85% | 95% | 80% | 85% | 100% |
Actual Classification | Fuzzy Algorithm Output | |||||
---|---|---|---|---|---|---|
80% | 85% | 90% | 95% | 100% | ||
80% | 14 | 14 | ||||
85% | 16 | 16 | ||||
90% | 14 | 14 | ||||
95% | 13 | 3 | 10 | |||
100% | 13 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khumaidi, A.; Purwanto, Y.A.; Sukoco, H.; Wijaya, S.H. Using Fuzzy Logic to Increase Accuracy in Mango Maturity Index Classification: Approach for Developing a Portable Near-Infrared Spectroscopy Device. Sensors 2022, 22, 9704. https://doi.org/10.3390/s22249704
Khumaidi A, Purwanto YA, Sukoco H, Wijaya SH. Using Fuzzy Logic to Increase Accuracy in Mango Maturity Index Classification: Approach for Developing a Portable Near-Infrared Spectroscopy Device. Sensors. 2022; 22(24):9704. https://doi.org/10.3390/s22249704
Chicago/Turabian StyleKhumaidi, Ali, Yohanes Aris Purwanto, Heru Sukoco, and Sony Hartono Wijaya. 2022. "Using Fuzzy Logic to Increase Accuracy in Mango Maturity Index Classification: Approach for Developing a Portable Near-Infrared Spectroscopy Device" Sensors 22, no. 24: 9704. https://doi.org/10.3390/s22249704
APA StyleKhumaidi, A., Purwanto, Y. A., Sukoco, H., & Wijaya, S. H. (2022). Using Fuzzy Logic to Increase Accuracy in Mango Maturity Index Classification: Approach for Developing a Portable Near-Infrared Spectroscopy Device. Sensors, 22(24), 9704. https://doi.org/10.3390/s22249704