A Bidirectional Wavelength Division Multiplexed (WDM) Free Space Optical Communication (FSO) System for Deployment in Data Center Networks (DCNs)
Abstract
:1. Introduction
2. Overview of Data Center Networks (DCNs)
3. WDM-FSO Architecture
4. FSO Channel Model
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent advances in optical technologies for data centers: A review. Optica 2018, 5, 1354–1370. [Google Scholar]
- Simpanen, E.; Gustavsson, J.S.; Larsson, A.; Karlsson, M.; Sorin, W.V.; Mathai, S.; Tan, M.R.; Bickham, S.R. 1060 nm Single-Mode VCSEL and Single-Mode Fiber Links for Long-Reach Optical Interconnects. J. Light. Technol. 2019, 37, 2963–2969. [Google Scholar]
- Denoyer, G.; Cole, C.; Santipo, A.; Russo, R.; Robinson, C.; Li, L.; Zhou, Y.; Park, B.; Boeuf, F.; Crémer, S.; et al. Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber. J. Light. Technol. 2015, 33, 1247–1254. [Google Scholar] [CrossRef]
- Ghafoor, S.; Mirza, J.; Kousar, T.; Qureshi, K.K. A Novel 60 Gbps Bidirectional Free Space Optical Link Based on a Single Laser Source. Arab. J. Sci. Eng. 2022, 47, 14721–14729. [Google Scholar]
- AlGhadhban, A.; Celik, A.; Shihada, B.; Alouini, M.S. LightFDG: An Integrated Approach to Flow Detection and Grooming in Optical Wireless DCNs. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1153–1166. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Zhu, Y.; Li, Y.; Kumar, S.; Vahdat, A.; Zhao, B.Y.; Zheng, H. Mirror mirror on the ceiling: Flexible wireless links for data centers. ACM SIGCOMM Comput. Commun. Rev. 2012, 42, 443–454. [Google Scholar] [CrossRef]
- Ghobadi, M.; Mahajan, R.; Phanishayee, A.; Devanur, N.; Kulkarni, J.; Ranade, G.; Blanche, P.A.; Rastegarfar, H.; Glick, M.; Kilper, D. Projector: Agile reconfigurable data center interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 22–26 August 2016; pp. 216–229. [Google Scholar]
- Hamza, A.S.; Yadav, S.; Ketan, S.; Deogun, J.S.; Alexander, D.R. OWCell: Optical wireless cellular data center network architecture. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification Framework for Free Space Optical Communication Links and Systems. IEEE Commun. Surv. Tutor. 2019, 21, 1346–1382. [Google Scholar]
- Son, I.K.; Mao, S. A survey of free space optical networks. Digital Commun. Netw. 2017, 3, 67–77. [Google Scholar] [CrossRef]
- Mirza, J.; Ghafoor, S.; Hussain, A. All-optical generation and transmission of multiple ultrawideband signals over free space optical link. Opt. Eng. 2019, 58, 056103. [Google Scholar] [CrossRef]
- Gappmair, W.; Flohberger, M. Error performance of coded FSO links in turbulent atmosphere modeled by gamma-gamma distributions. IEEE Trans. Wirel. Commun. 2009, 8, 2209–2213. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media: Second Edition. 2005. Available online: https://stars.library.ucf.edu/scopus2000/3722 (accessed on 16 November 2022).
- Wang, Z.; Zhong, W.D.; Yu, C. Performance Improvement of OOK Free-Space Optical Communication Systems by Coherent Detection and Dynamic Decision Threshold in Atmospheric Turbulence Conditions. IEEE Photonics Technol. Lett. 2012, 24, 2035–2037. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Sadough, S.M.S. Generalized Blind Detection of OOK Modulation for Free-Space Optical Communication. IEEE Commun. Lett. 2017, 21, 2170–2173. [Google Scholar] [CrossRef]
- Yang, F.; Gao, J.; Liu, S. Novel Visible Light Communication Approach Based on Hybrid OOK and ACO-OFDM. IEEE Photonics Technol. Lett. 2016, 28, 1585–1588. [Google Scholar] [CrossRef]
- Khallaf, H.S.; Shalaby, H.M.H.; Garrido-Balsells, J.M.; Sampei, S. Performance Analysis of a Hybrid QAM-MPPM Technique Over Turbulence-Free and Gamma–Gamma Free-Space Optical Channels. J. Opt. Commun. Netw. 2017, 9, 161–171. [Google Scholar] [CrossRef]
- Padhy, J.B.; Patnaik, B. Design and analysis of multiplexed FSO system with DPSK and Manchester coding. In Proceedings of the 2017 3rd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Tumkur, India, 21–23 December 2017; pp. 1–6. [Google Scholar]
- Yeh, C.H.; Guo, B.S.; Chang, Y.J.; Chow, C.W.; Gu, C.S. Bidirectional free space optical communication (FSO) in WDM access network with 1000-m supportable free space link. Opt. Commun. 2019, 435, 394–398. [Google Scholar]
- Yeh, C.; Chow, C.W.; Gu, C.; Guo, B.; Cheng, Y.; Chen, J. Performance analysis of free space optical communication traffic integrated with passive optical network. Electron. Lett. 2018, 54, 1228–1229. [Google Scholar]
- Mirza, J.; Ghafoor, S.; Hussain, A. A full duplex ultrawideband over free-space optics architecture based on polarization multiplexing and wavelength reuse. Microw. Opt. Technol. Lett. 2020, 62, 3999–4006. [Google Scholar] [CrossRef]
- Huang, X.; Xie, X.; Song, J.; Duan, T.; Hu, H.; Xu, X.; Su, Y. Performance Comparison of All-Optical Amplify-and-Forward Relaying FSO Communication Systems With OOK and DPSK Modulations. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar]
- Yeh, C.H.; Lin, W.P.; Luo, C.M.; Xie, Y.R.; Chang, Y.J.; Chow, C.W. Utilizing Single Lightwave for Delivering Baseband/FSO/MMW Traffics Simultaneously in PON Architecture. IEEE Access 2019, 7, 138927–138931. [Google Scholar] [CrossRef]
- Jaffer, S.S.; Hussain, A.; Qureshi, M.A.; Mirza, J.; Qureshi, K.K. A low cost PON-FSO based fronthaul solution for 5G CRAN architecture. Opt. Fiber Technol. 2021, 63, 102500. [Google Scholar]
- Arnon, S. Data center performance improvement using optical wireless links. In Proceedings of the Next-Generation Optical Networks for Data Centers and Short-Reach Links IV, San Francisco, CA, USA, 1 January–2 February 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10131, p. 1013103. [Google Scholar]
- Hamza, A.S. Recent advances in the design of optical wireless data center networks. Broadband Access Commun. Technol. XIII 2019, 10945, 114–124. [Google Scholar]
- Zhang, S.; Xue, X.; Yan, F.; Pan, B.; Guo, X.; Mekonnen, K.; Tangdiongga, E.; Calabretta, N. Feasibility Study of Optical Wireless Technology in Data Center Network. IEEE Photonics Technol. Lett. 2021, 33, 773–776. [Google Scholar] [CrossRef]
- Urata, R.; Liu, H.; Verslegers, L.; Johnson, C. Silicon photonics technologies: Gaps analysis for datacenter interconnects. In Silicon Photonics III; Springer: Berlin/Heidelberg, Germany, 2016; pp. 473–488. [Google Scholar]
- Urata, R.; Liu, H.; Zhou, X.; Vahdat, A. Datacenter interconnect and networking: From evolution to holistic revolution. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; p. W3G-1. [Google Scholar]
- Chakravarty, A.; Schmidtke, K.; Zeng, V.; Giridharan, S.; Deal, C.; Niazmand, R. 100 Gb/s CWDM4 optical interconnect at facebook data centers for bandwidth enhancement. In Proceedings of the Laser Science, Washington, DC, USA, 18–21 September 2017; p. JW4A.65. [Google Scholar]
- Cheng, Q.; Rumley, S.; Bahadori, M.; Bergman, K. Photonic switching in high performance datacenters. Opt. Express 2018, 26, 16022–16043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrington, N.; Porter, G.; Radhakrishnan, S.; Bazzaz, H.H.; Subramanya, V.; Fainman, Y.; Papen, G.; Vahdat, A. Helios: A hybrid electrical/optical switch architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30 August–3 September 2010; pp. 339–350. [Google Scholar]
- Sun, R.; Nguyen, V.; Agarwal, A.; Hong, C.y.; Yasaitis, J.; Kimerling, L.; Michel, J. High performance asymmetric graded index coupler with integrated lens for high index waveguides. Appl. Phys. Lett. 2007, 90, 201116. [Google Scholar] [CrossRef]
- Rokkas, T.; Neokosmidis, I.; Shariati, B.; Tomkos, I. Techno-economic evaluations of 400G optical interconnect implementations for datacenter networks. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Shieh, W.; Bao, H.; Tang, Y. Coherent optical OFDM: Theory and design. Opt. Express 2008, 16, 841–859. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Light. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Yi, X.; Fontaine, N.K.; Scott, R.P.; Yoo, S.B. Tb/s coherent optical OFDM systems enabled by optical frequency combs. J. Light. Technol. 2010, 28, 2054–2061. [Google Scholar]
- El-Nahal, F.; Hanik, N. Technologies for future wavelength division multiplexing passive optical networks. Iet Optoelectron. 2020, 14, 53–57. [Google Scholar] [CrossRef]
- Yoshida, T.; Kimura, S.; Kimura, H.; Kumozaki, K.; Imai, T. A new single-fiber 10-Gb/s optical loopback method using phase modulation for WDM optical access networks. J. Light. Technol. 2006, 24, 786. [Google Scholar]
- Bloom, S.; Korevaar, E.; Schuster, J.; Willebrand, H. Understanding the performance of free-space optics. J. Opt. Netw. 2003, 2, 178–200. [Google Scholar]
- OptiSystem Package from Optiwave. Available online: https://optiwave.com/ (accessed on 1 July 2022).
- Mizuochi, T. Forward error correction. In High Spectral Density Optical Communication Technologies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 303–333. [Google Scholar]
Acronym | Description |
---|---|
WDM | wavelength division multiplexing |
FSO | free space optical communication |
DCNs | data center networks |
16-QAM | 16-quadrature amplitude modulation |
VCSEL | vertical cavity surface emitting laser |
PAM-4 | 4-level pulse amplitude modulation |
OFDM | orthogonal frequency division multiplexing |
EDFA | erbium-doped fiber amplifier |
RSOA | reflective semiconductor optical amplifier |
PONs | passive optical networks |
OWC | optical wireless communication |
RoF | radio over fiber |
Parameter | Value |
---|---|
Laser power | 10 dBm |
Length of FSO link | 500 m |
FSO attenuation | 3 dB km−1 |
Beam divergence () | 2 mrad |
Transmitter aperture diameter () | 5 cm |
Receiver aperture diameter () | 20 cm |
No. of WDM channels | 32 |
Spacing between WDM channels | 50 GHz |
Responsivity of PIN | 1 A W−1 |
PIN thermal power density | |
PIN dark current | 10 nA |
Gain of electrical amplifier | 10 dB |
Electrical amplifier power spectral density | −60 dBm Hz−1 |
Parameter | Value |
---|---|
Input Facet Reflectivity | |
Output Facet Reflectivity | |
Active Length | m |
Taper Length | m |
Width | m |
Height | m |
Optical Confinement Factor | |
Nonlinear Gain Parameter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nahal, F.; Xu, T.; AlQahtani, D.; Leeson, M. A Bidirectional Wavelength Division Multiplexed (WDM) Free Space Optical Communication (FSO) System for Deployment in Data Center Networks (DCNs). Sensors 2022, 22, 9703. https://doi.org/10.3390/s22249703
El-Nahal F, Xu T, AlQahtani D, Leeson M. A Bidirectional Wavelength Division Multiplexed (WDM) Free Space Optical Communication (FSO) System for Deployment in Data Center Networks (DCNs). Sensors. 2022; 22(24):9703. https://doi.org/10.3390/s22249703
Chicago/Turabian StyleEl-Nahal, Fady, Tianhua Xu, Dokhyl AlQahtani, and Mark Leeson. 2022. "A Bidirectional Wavelength Division Multiplexed (WDM) Free Space Optical Communication (FSO) System for Deployment in Data Center Networks (DCNs)" Sensors 22, no. 24: 9703. https://doi.org/10.3390/s22249703
APA StyleEl-Nahal, F., Xu, T., AlQahtani, D., & Leeson, M. (2022). A Bidirectional Wavelength Division Multiplexed (WDM) Free Space Optical Communication (FSO) System for Deployment in Data Center Networks (DCNs). Sensors, 22(24), 9703. https://doi.org/10.3390/s22249703