Wideband Multichannel Nyquist-Spaced Long-Haul Optical Transmission Influenced by Enhanced Equalization Phase Noise
Abstract
:1. Introduction
2. Enhanced Equalization Phase Noise
3. Analytical Model
4. Transmission System
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Nonlinear Fiber Optics; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Savory, S.J. Digital filters for coherent optical receivers. Opt. Express 2008, 16, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.P.T.; Shen, T.S.R.; Shieh, W.; Ho, K.P. Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection. Opt. Express 2010, 18, 17239–17251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Nakamura, M.; Sasai, T.; Kakizaki, T.; Hamaoka, F.; Kobayashi, T.; Yamazaki, E.; Kisaka, Y. Impact of local oscillator phase noise on long-haul transmission of 120-Gbaud digital sub-carrier signals. In Proceedings of the Optical Fiber Communication Conference (OFC) 2022, San Diego, CA, USA, 6–10 March 2022; p. W3C.2. [Google Scholar] [CrossRef]
- Xiang, Q.; Yang, Y.; Zuo, T.; Zhang, Q.; Zhang, T.; Zhang, S.; Liu, L.; Yao, Y. Hardware efficient and chromatic dispersion tolerant symbol-rate equalization scheme for short-reach coherent transmission system. J. Lightw. Technol. 2022, 40, 5450–5456. [Google Scholar] [CrossRef]
- Ding, J.; Liu, T.; Xu, T.; Hu, W.; Popov, S.; Leeson, M.S.; Zhao, J.; Xu, T. Intra-channel nonlinearity mitigation in optical fiber transmission systems using perturbation-based neural network. J. Light. Technol. 2022, 40, 7106–7116. [Google Scholar] [CrossRef]
- Sato, M.; Arikawa, M.; Noguchi, H.; Matsui, J.; Abe, J.; de Gabory, E.L.T. Transceiver impairment mitigation by 8×2 widely linear MIMO equalizer with independent complex filtering on IQ signals. IEEE Photonics J. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Neves, M.S.; Lorences-Riesgo, A.; Martins, C.S.; Mumtaz, S.; Frignac, Y.; Charlet, G.; Monteiro, P.P.; Dris, S.; Guiomar, F.P. Leveraging dispersion-aware phase recovery for long-haul digital multi-carrier transmission: An experimental demonstration. J. Lightw. Technol. 2022, 40, 5432–5439. [Google Scholar] [CrossRef]
- Aref, V.; Buchali, F.; Ranzini, S.M. Mitigation of Equalization-Enhanced Phase Noise in a Coherent Optical Receiver. U.S. Patent App. 17/828,566, 8 December 2022. [Google Scholar]
- Poggiolini, P.; Bosco, G.; Carena, A.; Curri, V.; Jiang, Y.; Forghieri, F. The GN-model of fiber non-linear propagation and its applications. J. Lightw. Technol. 2013, 32, 694–721. [Google Scholar] [CrossRef] [Green Version]
- Poggiolini, P.; Jiang, Y. Recent advances in the modeling of the impact of nonlinear fiber propagation effects on uncompensated coherent transmission systems. J. Lightw. Technol. 2017, 35, 458–480. [Google Scholar] [CrossRef]
- Poggiolini, P.; Jiang, Y.; Carena, A.; Forghieri, F. Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks; Chapter 7; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Jin, C.; Shevchenko, N.A.; Li, Z.; Popov, S.; Chen, Y.; Xu, T. Nonlinear coherent optical systems in the presence of equalization enhanced phase noise. J. Lightw. Technol. 2021, 39, 4646–4653. [Google Scholar] [CrossRef]
- Ho, K.P.; Lau, A.P.T.; Shieh, W. Equalization-enhanced phase noise induced timing jitter. Opt. Lett. 2011, 36, 585–587. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.P.; Shieh, W. Equalization-enhanced phase noise in mode-division multiplexed systems. J. Lightw. Technol. 2013, 31, 2237–2243. [Google Scholar]
- Kakkar, A.; Navarro, J.R.; Schatz, R.; Louchet, H.; Pang, X.; Ozolins, O.; Jacobsen, G.; Popov, S. Comprehensive study of equalization-enhanced phase noise in coherent optical systems. J. Lightw. Technol. 2015, 33, 4834–4841. [Google Scholar] [CrossRef]
- Shieh, W.; Ho, K.P. Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing. Opt. Express 2008, 16, 15718. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Jacobsen, G.; Popov, S.; Li, J.; Sergeyev, S.; Friberg, A.T.; Liu, T.; Zhang, Y. Analysis of chromatic dispersion compensation and carrier phase recovery in long-haul optical transmission system influenced by equalization enhanced phase noise. Optik 2017, 138, 494–508. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Liga, G.; Lavery, D.; Thomsen, B.C.; Savory, S.J.; Killey, R.I.; Bayvel, P. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation. Sci. Rep. 2015, 5, 13990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, G.; Lidón, M.; Xu, T.; Popov, S.; Friberg, A.T.; Zhang, Y. Influence of pre- and post-compensation of chromatic dispersion on equalization enhanced phase noise in coherent multilevel systems. J. Opt. Commun. 2011, 32, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Arnould, A.; Ghazisaeidi, A. Equalization enhanced phase noise in coherent receivers: DSP-aware analysis and shaped constellations. J. Lightw. Technol. 2019, 37, 5282–5290. [Google Scholar] [CrossRef] [Green Version]
- Poggiolini, P.; Carena, A.; Curri, V.; Bosco, G.; Forghieri, F. Analytical modeling of nonlinear propagation in uncompensated optical transmission links. IEEE Photonics Technol. Lett. 2011, 23, 742–744. [Google Scholar] [CrossRef]
- Poggiolini, P. The GN Model of non-linear propagation in uncompensated coherent optical systems. J. Lightw. Technol. 2012, 30, 3857–3879. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Shevchenko, N.A.; Lavery, D.; Semrau, D.; Liga, G.; Alvarado, A.; Killey, R.I.; Bayvel, P. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems. Opt. Express 2017, 25, 3311–3326. [Google Scholar] [CrossRef]
- Shevchenko, N.A.; Xu, T.; Lavery, D.; Liga, G.; Ives, D.J.; Killey, R.I.; Bayvel, P. Modeling of nonlinearity-compensated optical communication systems considering second-order signal-noise interactions. Opt. Lett. 2017, 42, 3351–3354. [Google Scholar] [CrossRef] [PubMed]
- Dar, R.; Feder, M.; Mecozzi, A.; Shtaif, M. Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Opt. Express 2013, 21, 25685–25699. [Google Scholar] [CrossRef] [PubMed]
- Dar, R.; Feder, M.; Mecozzi, A.; Shtaif, M. Accumulation of nonlinear interference noise in fiber-optic systems. Opt. Express 2014, 22, 14199–14211. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, W.; Di Pasquale, F.; Bayvel, P.; Midwinter, J.E. Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks. J. Lightw. Technol. 1996, 14, 1933–1942. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Poggiolini, P.; Bosco, G.; Carena, A.; Curri, V.; Jiang, Y.; Forghieri, F. A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution. J. Lightw. Technol. 2015, 33, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Marcuse, D.; Manyuk, C.R.; Wai, P.K.A. Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. J. Lightw. Technol. 1997, 15, 1735–1746. [Google Scholar] [CrossRef] [Green Version]
- Bosco, G.; Carena, A.; Curri, V.; Gaudino, R.; Poggiolini, P.; Benedetto, S. Suppression of spurious tones induced by the split-step method in fiber systems simulation. IEEE Photonics Technol. Lett. 2000, 12, 489–491. [Google Scholar] [CrossRef]
- Ip, E.; Kahn, J.M. Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightw. Technol. 2008, 26, 3416–3425. [Google Scholar] [CrossRef]
- Chang, F.; Onohara, K.; Mizuochi, T. Forward error correction for 100 G transport networks. IEEE Commun. Mag. 2010, 48, S48–S55. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Attenuation coefficient | 0.2 dB/km |
Nonlinear coefficient () | 1.2 /W/km |
CD coefficient (D) | 17 ps/nm/km |
Center wavelength | 1550 nm |
Channel spacing | GHz |
Symbol rate (R) | GBd |
Modulation format | |
EDFA noise figure | 4.5 dB |
Roll-off factor | 0.1% |
LO laser linewidth | 100 kHz |
Number of symbols |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Shevchenko, N.A.; Wang, J.; Chen, Y.; Xu, T. Wideband Multichannel Nyquist-Spaced Long-Haul Optical Transmission Influenced by Enhanced Equalization Phase Noise. Sensors 2023, 23, 1493. https://doi.org/10.3390/s23031493
Jin C, Shevchenko NA, Wang J, Chen Y, Xu T. Wideband Multichannel Nyquist-Spaced Long-Haul Optical Transmission Influenced by Enhanced Equalization Phase Noise. Sensors. 2023; 23(3):1493. https://doi.org/10.3390/s23031493
Chicago/Turabian StyleJin, Cenqin, Nikita A. Shevchenko, Junqiu Wang, Yunfei Chen, and Tianhua Xu. 2023. "Wideband Multichannel Nyquist-Spaced Long-Haul Optical Transmission Influenced by Enhanced Equalization Phase Noise" Sensors 23, no. 3: 1493. https://doi.org/10.3390/s23031493
APA StyleJin, C., Shevchenko, N. A., Wang, J., Chen, Y., & Xu, T. (2023). Wideband Multichannel Nyquist-Spaced Long-Haul Optical Transmission Influenced by Enhanced Equalization Phase Noise. Sensors, 23(3), 1493. https://doi.org/10.3390/s23031493