Imaging of Insect Hole in Living Tree Trunk Based on Joint Driven Algorithm of Electromagnetic Inverse Scattering
Abstract
:1. Introduction
2. Electromagnetic Inverse Scattering Formulation
3. Joint-Driven Algorithm
3.1. Unite the Contrast Source Inversion with a Deep Convolutional Network
3.2. Analysis and Optimization of Weights
3.3. Super-Resolution Network-Assisted Imaging
3.4. Evaluation Indicators
4. Experiments and Results Analysis
4.1. Experiment Condition
4.2. Imaging Experiment of Insect Hole in Living Trees
4.2.1. Relationship between Accuracy and
4.2.2. Detection of Pest Communities with Different Values
4.3. Discussion of Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Q.; Liu, H.-H. Drying stress and strain of wood: A Review. Appl. Sci. 2021, 11, 5023. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, Q.; Cao, J.; Zhang, B.; Zhang, L. Delamination detection in bimetallic composite using laser ultrasonic bulk waves. Appl. Sci. 2021, 11, 636. [Google Scholar] [CrossRef]
- Ansari, M.S.; Bartos, V.; Lee, B. Shallow and Deep Learning Approaches for Network Intrusion Alert Prediction. Procedia Comput. Sci. 2020, 171, 644–653. [Google Scholar] [CrossRef]
- Du, X.; Li, S.; Li, G.; Feng, H.; Chen, S. Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation. BioResources 2015, 10, 3948–3962. [Google Scholar] [CrossRef]
- Taskhiri, M.S.; Hafezi, M.H.; Harle, R.; Williams, D.; Kundu, T.; Turner, P. Ultrasonic and thermal testing to non-destructively identify internal defects in plantation eucalypts. Comput. Electron. Agric. 2020, 173, 105396. [Google Scholar] [CrossRef]
- Du, X.; Feng, H.; Hu, M.; Fang, Y.; Chen, S. Three-dimensional stress wave imaging of wood internal defects using TKriging method. Comput. Electron. Agric. 2018, 148, 63–71. [Google Scholar] [CrossRef]
- Mousavi, M.; Taskhiri, M.S.; Holloway, D.; Olivier, J.; Turner, P. Feature extraction of wood-hole defects using empirical mode decomposition of ultrasonic signals. NDT E Int. 2020, 114, 102282. [Google Scholar] [CrossRef]
- Ligong, P.; Rodion, R.; Sergey, K. Artificial neural network for defect detection in CT images of wood. Comput. Electron. Agric. 2021, 187, 106312. [Google Scholar]
- Kaczmarek, R.G.; Bednarek, D.R.; Wong, R.; Kaczmarek, R.V.; Rudin, S.; Alker, G. Potential radiation hazards to personnel during dynamic CT. Radiology 1986, 161, 853. [Google Scholar] [CrossRef]
- Merela, M.; Oven, P.; Sepe, A.; Serša, I. Three-dimensional in vivo magnetic resonance microscopy of beech (Fagus sylvatica L.) wood. Biol. Med. 2005, 18, 171–174. [Google Scholar] [CrossRef]
- Winters, D.W.; Van Veen, B.D.; Hagness, S.C. A sparsity regularization approach to the electromagnetic inverse scattering problem. IEEE Trans. Antennas Propag. 2009, 58, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Kaipio, J.P.; Huttunen, T.; Luostari, T.; Lähivaara, T.; Monk, P.B. A Bayesian approach to improving the Born approximation for inverse scattering with high-contrast materials. Inverse Probl. 2019, 35, 084001. [Google Scholar] [CrossRef] [Green Version]
- Tajik, D.; Kazemivala, R.; Nikolova, N.K. Real-time imaging with simultaneous use of born and Rytov approximations in quantitative microwave holography. IEEE Trans. Microw. Theory Tech. 2021, 70, 1896–1909. [Google Scholar] [CrossRef]
- Shah, P.; Chen, G.; Moghaddam, M. Learning nonlinearity of microwave imaging through deep learning. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 699–700. [Google Scholar]
- Leijsen, R.; Fuchs, P.; Brink, W.; Webb, A.; Remis, R. Developments in electrical-property tomography based on the contrast-source inversion method. J. Imaging 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Pasha, M.; Kupis, S.; Ahmad, S.; Khan, T. A Krylov subspace type method for Electrical Impedance Tomography. ESAIM Math. Model. Numer. Anal. 2021, 55, 2827–2847. [Google Scholar] [CrossRef]
- Vrahatis, M.; Magoulas, G.; Plagianakos, V. From linear to nonlinear iterative methods. Appl. Numer. Math. 2003, 45, 59–77. [Google Scholar] [CrossRef]
- Rekanos, I.T. Neural-network-based inverse-scattering technique for online microwave medical imaging. IEEE Trans. Magn. 2002, 38, 1061–1064. [Google Scholar] [CrossRef]
- Anaraki, A.K.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74. [Google Scholar] [CrossRef]
- Desmal, A.; Bağcı, H. Shrinkage-thresholding enhanced Born iterative method for solving 2D inverse electromagnetic scattering problem. IEEE Trans. Antennas Propag. 2014, 62, 3878–3884. [Google Scholar] [CrossRef]
- Lim, J.; Psaltis, D. MaxwellNet: Physics-driven deep neural network training based on Maxwell’s equations. Apl Photonics 2022, 7, 011301. [Google Scholar] [CrossRef]
- Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Processing Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef]
- Svendsen, D.H.; Morales-Álvarez, P.; Ruescas, A.B.; Molina, R.; Camps-Valls, G. Deep Gaussian processes for biogeophysical parameter retrieval and model inversion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Simon, S. Bilateral spectrum weighted total variation for noisy-image super-resolution and image denoising. IEEE Trans. Signal Processing 2021, 69, 6329–6341. [Google Scholar] [CrossRef]
- Schneider, M. Lippmann-Schwinger solvers for the computational homogenization of materials with pores. Int. J. Numer. Methods Eng. 2020, 121, 5017–5041. [Google Scholar] [CrossRef]
- Caratelli, D.; Cicchetti, R.; Cicchetti, V.; Testa, O.; Faraone, A. Electromagnetic scattering from truncated thin cylinders: An approach based on the incomplete Hankel functions and surface impedance boundary conditions. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 1739–1742. [Google Scholar]
- Peters, G.; Wilkinson, J.H. Inverse iteration, ill-conditioned equations and Newton’s method. SIAM Rev. 1979, 21, 339–360. [Google Scholar] [CrossRef]
- Ran, P.; Qin, Y.; Lesselier, D. Electromagnetic imaging of a dielectric micro-structure via convolutional neural networks. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Buehlmann, U.; Thomas, R.E. Impact of human error on lumber yield in rough mills. Robot. Comput. Integr. Manuf. 2002, 18, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Hashim, U.R.; Hashim, S.Z.; Muda, A.K. Automated vision inspection of timber surface defect: A review. J. Teknol. 2015, 77. [Google Scholar] [CrossRef] [Green Version]
- Golilarz, N.A.; Demirel, H.; Gao, H. Adaptive generalized Gaussian distribution oriented thresholding function for image de-noising. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1905–1914. [Google Scholar]
- Schonfeld, E.; Schiele, B.; Khoreva, A. A u-net based discriminator for generative adversarial networks. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8207–8216. [Google Scholar]
- Yan, Y.; Liu, C.; Chen, C.; Sun, X.; Jin, L.; Peng, X.; Zhou, X. Fine-grained attention and feature-sharing generative adversarial networks for single image super-resolution. IEEE Trans. Multimed. 2021, 24, 1473–1487. [Google Scholar] [CrossRef]
- Wiratama, W.; Lee, J.; Sim, D. Change detection on multi-spectral images based on feature-level U-Net. IEEE Access 2020, 8, 12279–12289. [Google Scholar] [CrossRef]
- Zhang, G.; Pan, Y.; Zhang, L. Semi-supervised learning with GAN for automatic defect detection from images. Autom. Constr. 2021, 128, 103764. [Google Scholar] [CrossRef]
Algorithm | Algorithm Defects | Algorithm Advantages |
---|---|---|
CSI | Sensitive initial value; slow convergence speed; unable to process large-scale data | Iterative solution; not involving solving the positive problem |
SOM | Sensitive initial value; unable to process large-scale data; large amount of calculation | Reduces CSI solving dimension; improves solving speed and success probability |
CNN | Needs a lot of data training; shifts the computational burden to the learning stage | No physical modeling required |
Parameter Name | Parameter Values | Parameter Name | Parameter Values |
---|---|---|---|
Domain of solution | 2 m 2 m | The relative permittivity of pest community | 60 |
The radius of a living tree | 0.6 m | Air resistance | 120 |
1:10~1:60 | Number of electromagnetic emitters | 32 | |
Electromagnetic frequency | 200 MHz~700 MHz | Number of electromagnetic wave receivers | 32 |
The relative permittivity of air | 1 | The internal relative dielectric constant of tree | 7 |
Noise factor | 0.2 |
Contrast Source Inversion | Deep Convolutional Inversion | Joint Driven Inversion | Joint-Driven Super-Resolution Inversion | |
---|---|---|---|---|
1:10 | 0.885 | 0.954 | 1 | 1 |
1:20 | 0.757 | 0.775 | 1 | 1 |
1:30 | 0.541 | 0.851 | 0.955 | 0.984 |
1:40 | 0.432 | 0.653 | 0.953 | 0.982 |
1:50 | 0.325 | 0.773 | 0.958 | 0.988 |
1:60 | error | 0.763 | 0.954 | 0.986 |
Contrast Source Inversion | Deep Convolutional Inversion | Joint-Driven Inversion | Joint-Driven Super-Resolution Inversion | |||
---|---|---|---|---|---|---|
Iteration stability times | 500 | 350 | 60 | 60 | ||
1:10 | Maximum error | 11.1% | 6.6% | 3.3% | 2.5% | |
Minimum error | 7.3% | 3.6% | 1.5% | 1.3% | ||
1:20 | Maximum error | 23.3% | 15.5% | 7.2% | 3.3% | |
Minimum error | 15.4% | 10.2% | 4.5% | 1.5% | ||
1:30 | Maximum error | Non | 17.5% | 8% | 4.2% | |
Minimum error | Non | 14.3% | 4.8% | 2.3% | ||
1:40 | Maximum error | Non | 25.8% | 8.6% | 4.9% | |
Minimum error | Non | 22.3% | 5.1% | 2.8% | ||
1:50 | Maximum error | Non | 36.4% | 9.2% | 5.6% | |
Minimum error | Non | 28.5% | 5.5% | 3.7% | ||
1:60 | Maximum error | Non | 41.2% | 10.1% | 6.5% | |
Minimum error | Non | 33.3% | 6.5% | 4.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Shi, J.; Zhou, H.; Song, W.; Zhou, H.; Zhao, Y. Imaging of Insect Hole in Living Tree Trunk Based on Joint Driven Algorithm of Electromagnetic Inverse Scattering. Sensors 2022, 22, 9840. https://doi.org/10.3390/s22249840
Song J, Shi J, Zhou H, Song W, Zhou H, Zhao Y. Imaging of Insect Hole in Living Tree Trunk Based on Joint Driven Algorithm of Electromagnetic Inverse Scattering. Sensors. 2022; 22(24):9840. https://doi.org/10.3390/s22249840
Chicago/Turabian StyleSong, Jiayin, Jie Shi, Hongwei Zhou, Wenlong Song, Hongju Zhou, and Yue Zhao. 2022. "Imaging of Insect Hole in Living Tree Trunk Based on Joint Driven Algorithm of Electromagnetic Inverse Scattering" Sensors 22, no. 24: 9840. https://doi.org/10.3390/s22249840
APA StyleSong, J., Shi, J., Zhou, H., Song, W., Zhou, H., & Zhao, Y. (2022). Imaging of Insect Hole in Living Tree Trunk Based on Joint Driven Algorithm of Electromagnetic Inverse Scattering. Sensors, 22(24), 9840. https://doi.org/10.3390/s22249840