Performance Evaluation of Information Gathering from Edge Devices in a Complex of Smart Buildings
Abstract
:1. Introduction
- The article addresses a timely issue—the use of smart building monitoring systems to identify emergency events and transmit notifications to the responsible personnel. It presents a qualitative analysis of design options considering two criteria: the location of the container-based services in the software architecture, and the edge network.
- For the containerized architecture, we set up testing environments for two architectural options: a centralized one, with a cluster hosted in a public cloud, and a decentralized one, with a similar cluster deployed in a local datacenter. The tests were executed for different numbers of edge nodes corresponding to real-life situations: a small apartment, a house, a small residential building, an office building, and a complex of smart buildings.
- Based on the measured performance, the article makes recommendations for choosing between the public cloud and local deployment with respect to the number of edge nodes used for building monitoring.
- We explain the design choices and several implementation details for a complex of smart buildings gathering data from numerous edge nodes (up to 1000), for which performance tests demonstrated that a cloud solution for identifying and notifying emergencies is expected to deliver better response times.
2. Related Work
2.1. Edge Computing for Emergency Detection
2.2. Performance Testing
3. Analysis of Design Options for the Edge Watcher System
- (1).
- The architectural design of the container-orchestration system (analyzed in Section 3.1);
- (2).
- The method of connecting sensing devices to the Cloud (analyzed in Section 3.2).
3.1. Options for the Containerized Architecture
3.2. Options for the Sensing Devices
4. Performance Evaluation of the Containerized Architecture Options
4.1. Scenarios
- 50 edge nodes—scattered around multiple buildings that comprise the complex;
- 100 edge nodes—to test the capacity to work under a high load by registering a high number of environmental data points sent within a short period of time;
- 1000 edge nodes—to test the limits of the cluster configuration and the capacity to simulate 1000 requests sent to the system without a ramp-up period; the requests are sent immediately to the server, and it has to address each request as soon as the previous one has been fulfilled.
4.2. Performance Test Settings
- The number of threads: represents the number of edge nodes used to send environmental data to the application;
- Ramp-up period: the time that it would take to get to the full number of threads;
- Loop count: the number of tests to be executed.
4.3. Containerized Environment Setup
- Deployment in IBM Cloud data centers;
- Free one node Kubernetes cluster with two cores and 4GB of RAM (default free tier);
- Kubernetes version: 1.21.7 (default).
- Deployed on a Windows machine with 4-core Intel i7 CPU, coupled with 8 GB of RAM-Windows Subsystem for Linux (WSL) 2;
- Docker Desktop WSL 2 backend version 4.1.1 with Kubernetes;
- Memory and CPU allocated dynamically to improve resource consumption;
- Kubernetes version 1.21.5 (default).
4.4. Performance Metrics
- Error % (for the execution);
- Average response time;
- Minimum response time;
- Maximum response time;
- Median response time;
- Percentiles;
- Transactions/s (for the throughput).
4.5. Emergency Detection Algorithm Used in Testing
5. Results
6. Discussion
6.1. Performance Comparison Based on Scenarios
6.2. Final Design Choices
6.3. Edge Watcher System
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winkowska, J.; Szpilko, D.; Pejic, S. Smart city concept in the light of the literature review. Eng. Manag. Prod. Serv. 2019, 11, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, B.; Kaliamoorthy, M.; Ragupathy, U.S.; Sudha, R.; Nandini, D.U.; Maheswar, R. State-of-the-Art and Emerging Trends in Internet of Things for Smart Cities. In Challenges and Solutions for Sustainable Smart City Development; Maheswar, R., Balasaraswathi, M., Rastogi, R., Sampathkumar, A., Kanagachidambaresan, G.R., Eds.; Springer: Berlin, Germany, 2021; pp. 263–274. [Google Scholar] [CrossRef]
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Zhang, J.; Seet, B.C.; Lie, T.T. Building Information Modelling for Smart Built Environments. Buildings 2015, 5, 100–115. [Google Scholar] [CrossRef] [Green Version]
- Ullah, F.; Qayyum, S.; Thaheem, M.J.; Al-Turjman, F.; Sepasgozar, S. Risk management in sustainable smart cities governance: A TOE framework. Technol. Forecast. Soc. Chang. 2021, 167, 120743. [Google Scholar] [CrossRef]
- Serrenho, T.; Bertoldi, P. Smart home and appliances: State of the art—Energy, Communications, Protocols, Standards. In JRC Technical Reports; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Prakash, P.; Darshaun, K.G.; Yaazhlene, P.; Medidhi, V.G.; Vasudha, B. Fog Computing: Issues, Challenges and Future Directions. IJECE 2017, 7, 3669–3673. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulos, T.G.; Tsioliaridou, A.; Koutitas, G.; Koutitas, G.; Vrakas, D.; Vlahavas, I.P. System Architecture for a Smart University Building. In ICANN; Diamantaras, K., Duch, W., Iliadis, L.S., Eds.; Springer: Heidelberg, Germany, 2010; Volume 6354, pp. 477–482. [Google Scholar] [CrossRef]
- Kurniawan, F.; Meidia, H.; Salim, S. Building Monitoring System Based on Zigbee. JCSI 2013, 6, 65–69. [Google Scholar] [CrossRef]
- Lăcătuşu, F.; Ionita, A.D. Architecture for Monitoring Risk Situations in a University Environment. Rev. Roum. Sci. Tech. Electrotech. 2020, 65, 259–263. [Google Scholar]
- Alankar, B.; Sharma, G.; Kaur, H.; Valverde, R.; Chang, V. Experimental Setup for Investigating the Efficient Load Balancing Algorithms on Virtual Cloud. Sensors 2020, 20, 7342. [Google Scholar] [CrossRef]
- Costa, D.G.; Vasques, F.; Portugal, P.; Aguiar, A. A Distributed Multi-Tier Emergency Alerting System Exploiting Sensors-Based Event Detection to Support Smart City Applications. Sensors 2020, 20, 170. [Google Scholar] [CrossRef] [Green Version]
- Pietraru, R.N.; Zegrea, L.G.; Ionita, A.D. Publish-Subscribe Deployment Alternatives for Scenarios Related to University Laboratory Safety. In Proceedings of the 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 28–30 March 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tcholtchev, N.; Schieferdecker, I. Sustainable and Reliable Information and Communication Technology for Resilient Smart Cities. Smart Cities 2021, 4, 156–176. [Google Scholar] [CrossRef]
- Syafrudin, M.; Fitriyani, N.; Alfian, G.; Rhee, J. An Affordable Fast Early Warning System for Edge Computing in Assembly Line. Appl. Sci. 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Shuja, J.; Humayun, M.A.; Alasmary, W.; Sinky, H.; Alanazi, E.; Khurram Khan, M. Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications. IEEE Sens. J. 2021, 21, 25114–25122. [Google Scholar] [CrossRef]
- Khalifeh, A.; Darabkh, K.A.; Khasawneh, A.M.; Alqaisieh, I.; Salameh, M.; AlAbdala, A.; Alrubaye, S.; Alassaf, A.; Al-HajAli, S.; Al-Wardat, R.; et al. Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation. Electronics 2021, 10, 218. [Google Scholar] [CrossRef]
- Erinle, B. Performance Testing with JMeter 2.9; Packt Publishing: Birmingham, UK, 2013. [Google Scholar]
- Haseeb-ur-rehman, R.M.A.; Liaqat, M.; Mohd Aman, A.H.; Ab Hamid, S.H.; Ali, R.L.; Shuja, J.; Khurram Khan, M. Sensor Cloud Frameworks: State-of-the-Art, Taxonomy, and Research Issues. IEEE Sens. J. 2021, 21, 22347–22370. [Google Scholar] [CrossRef]
- Bhawiyuga, A.; Kartikasari, D.P.; Amron, K.; Pratama, O.B.; Habibi, M.W. Architectural design of IoT-cloud computing integration platform. Telkomnika 2019, 17, 1399–1408. [Google Scholar] [CrossRef]
- Araujo, V.; Mitra, K.; Saguna, S.; Åhlund, C. Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. JPDC 2019, 132, 250–261. [Google Scholar] [CrossRef]
- Maheshwari, S.; Raychaudhuri, D.; Seskar, I.; Bronzino, F. Scalability and Performance Evaluation of Edge Cloud Systems for Latency Constrained Applications. In Proceedings of the Third ACM/IEEE Symposium on Edge Computing, Seattle, WA, USA, 25–27 October 2018. [Google Scholar] [CrossRef]
- Li, C.; Song, M.; Zhang, M.; Luo, Y. Effective replica management for improving reliability and availability in edge-cloud computing environment. JPDC 2020, 143, 107–128. [Google Scholar] [CrossRef]
- Palade, A.; Kazmi, A.; Clarke, S. An Evaluation of Open Source Serverless Computing Frameworks Support at the Edge. In Proceedings of the 2019 IEEE World Congress on Services, Milan, Italy, 8–13 July 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Huang, C.T.; Tseng, C.W.; Yang, Y.T.; Chou, L.D. Service Resource Management in Edge Computing based on microservices. In Proceedings of the IEEE International Conference on Smart Internet of Things, SmartIoT, Tianjin, China, 9–11 August 2019; pp. 388–392. [Google Scholar]
- Shuja, J.; Mustafa, S.; Ahmad, R.W.; Madani, S.A.; Gani, A.; Khurram Khan, M. Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures. IEEE Access 2017, 5, 24542–24554. [Google Scholar] [CrossRef]
- Scheuner, J.; Leitner, P. Function-as-a-Service performance evaluation: A multivocal literature review. J. Syst. Softw. 2020, 170, 110708. [Google Scholar] [CrossRef]
- Djedouboum, A.C.; Ari, A.A.A.; Gueroui, A.M.; Mohamadou, A.; Aliouat, Z. Big Data Collection in Large-Scale Wireless Sensor Networks. Sensors 2018, 18, 4474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, D.; Marín-Pérez, A. Continuos Delivery in Java: Essentials Tools and Best Practises for Deploying Code to Production; O’Reilly Media: Sebastopol, CA, USA, 2018. [Google Scholar]
- Ishmael, N.A.; Ogara, S.; Raburu, G. Review of Smart Buildings Based On Adoption of Internet of Things Application Enablement Platform. WJIR 2020, 9, 115–132. [Google Scholar]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Gomez-Trillo, S.; Valdivieso-Sarabia, R.; Nieto-Hidalgo, M. Smart Management Consumption in Renewable Energy Fed Ecosystems. Sensors 2019, 19, 2967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, B.; Soares, A.; Nguyen, T.-A.; Min, D.-K.; Lee, J.-W.; Silva, F.-A. IoT Sensor Networks in Smart Buildings: A Performance Assessment Using Queuing Models. Sensors 2021, 21, 5660. [Google Scholar] [CrossRef] [PubMed]
- Markoska, E.; Lazarova-Molnar, S. Towards smart buildings performance testing as a service. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018. [Google Scholar] [CrossRef]
- Rodrigues, A.G.; Demion, B.; Mouawad, P. Master Apache JMeter—From Load Testing to DevOps; Packt Publishing: Birmingham, UK, 2019. [Google Scholar]
- Kołtun, A.; Pańczyk, B. Comparative analysis of web application performance testing tools. JCSI 2020, 17, 351–357. [Google Scholar] [CrossRef]
- Jha, N.; Popli, R. Comparative Analysis of Web Applications using JMeter. IJARCS 2017, 8, 774–777. [Google Scholar] [CrossRef]
- Banias, O.; Florea, D.; Gyalai, R.; Curiac, D.I. Automated Specification-Based Testing of REST APIs. Sensors 2021, 21, 5375. [Google Scholar] [CrossRef]
- International Building Code; International Code Council: Country Club Hills, IL, USA, 2018; ISBN 978-1-60983-735-8.
- National Construction Code 2019 Building Code of Australia, Volume One. Available online: https://ncc.abcb.gov.au/sites/default/files/ncc/NCC_2019_Volume_One_Amendment%201.pdf (accessed on 6 December 2021).
- Niranjanamurthy, M.; Kiran Kumar, S.; Saha, A.; Chahar, D. Comparative Study on Performance Testing with JMeter. IJARCCE 2016, 5, 70–76. [Google Scholar] [CrossRef]
- Apache JMeter—REST Test Plan. Available online: https://jmeter.apache.org/usermanual/build-ws-test-plan.html#rest_webservice (accessed on 6 December 2021).
- IBM Cloud Kubernetes Service. Available online: https://www.ibm.com/cloud/kubernetes-service (accessed on 6 December 2021).
- Docker Desktop Overview. Available online: https://docs.docker.com/desktop/ (accessed on 6 December 2021).
- Kubernetes Pods. Available online: https://kubernetes.io/docs/concepts/workloads/pods/ (accessed on 6 December 2021).
- Anderson, D.R. Statistics, Britannica. Available online: https://www.britannica.com/science/statistics/Numerical-measures (accessed on 6 December 2021).
- 90th-Percentile-in-Performance-Testing. Available online: https://www.perfmatrix.com/90th-percentile-in-performance-testing/ (accessed on 6 December 2021).
- Glossary. Apache JMeter. Available online: https://jmeter.apache.org/usermanual/glossary.html (accessed on 6 December 2021).
- Serrano, D.; Bouchenak, S.; Kouki, Y.; Alvares de Oliveira, F., Jr.; Ledoux, T.; Lejeune, J.; Sopena, J.; Arantes, L.; Sens, P. SLA guarantees for cloud services. Future Gener. Comput. Syst. 2016, 54, 233–246. [Google Scholar] [CrossRef]
- Johnston, S.J.; Cox, S.J. The Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams. Electronics 2017, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, M.F.; Paradis, C.; Weaver, V.M. A Raspberry Pi Cluster Instrumented for Fine-Grained Power Measurement. Electronics 2016, 5, 61. [Google Scholar] [CrossRef] [Green Version]
Test | Executions | Response Time (ms) | Throughput | Emergency Detection Algorithm | |||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Samples (Edge Nodes) | Error (%) | Average | Min | Max | Median | 95th Percentile | Transactions /s | Run time (ms) |
Small apartment | 1 | 0 | 389 | 389 | 389 | 389 | 389 | 2.57 | 3.52 |
House | 2 | 0 | 375.5 | 371 | 380 | 375.5 | 380 | 5.26 | 4.42 |
Small residential building | 5 | 0 | 380 | 371 | 385 | 382 | 385 | 12.89 | 3.49 |
Office building | 20 | 0 | 405.75 | 374 | 437 | 405.5 | 436.8 | 43.8 | 21.8 |
A complex of buildings | 50 | 0 | 472.84 | 391 | 560 | 461 | 553.45 | 81.04 | 167.43 |
100 | 0 | 574 | 376 | 748 | 574 | 729 | 115.74 | 144.42 | |
200 | 0 | 556.83 | 375 | 815 | 563.50 | 789.00 | 203.87 | 278.9 | |
300 | 0 | 906.49 | 446 | 1336 | 947.50 | 1309.95 | 196.34 | 564.4 | |
400 | 0 | 981.00 | 380 | 1461 | 936.00 | 1412.85 | 236.27 | 554.4 | |
500 | 0 | 1393.26 | 420 | 2090 | 1394.50 | 2014.85 | 212.04 | 560.3 | |
600 | 0 | 1614.98 | 391 | 2282 | 1602.00 | 2225.95 | 223.46 | 846.57 | |
700 | 0 | 1584.66 | 374 | 2373 | 1620.00 | 2288.90 | 246.05 | 448.3 | |
800 | 0 | 1832.57 | 398 | 2759 | 1855.0 | 2651.95 | 250.16 | 677 | |
900 | 0 | 2026.60 | 499 | 3056 | 1994.0 | 2954.85 | 230.00 | 1036.5 | |
1000 | 0 | 1992 | 384 | 3538 | 1927 | 3359 | 189.9 | 939.89 |
Test | Executions | Response Time (ms) | Throughput | Emergency Detection Algorithm | |||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Samples (Edge Nodes) | Error (%) | Average | Min | Max | Median | 95th Percentile | Transactions /s | Run time (ms) |
Small apartment | 1 | 0 | 9 | 9 | 9 | 9 | 9 | 111.11 | 3.22 |
House | 2 | 0 | 11 | 9 | 13 | 11 | 13 | 153.85 | 3.59 |
Small residential building | 5 | 0 | 24 | 16 | 32 | 23 | 32 | 151.52 | 19.62 |
Office building | 20 | 0 | 68.2 | 31 | 109 | 69.5 | 107.7 | 176.99 | 57.3 |
A complex of buildings | 50 | 0 | 228.44 | 97 | 288 | 239 | 285.8 | 130.89 | 155.5 |
100 | 0 | 322.33 | 78 | 460 | 311 | 447.9 | 175.75 | 288.86 | |
200 | 0 | 543.18 | 138 | 978.6 | 553.7 | 930.7 | 176.3 | 447.3 | |
300 | 0 | 768.05 | 147 | 1390 | 769.3 | 1322.1 | 179.2 | 574.5 | |
400 | 0 | 995.9 | 164 | 1821.6 | 1002.5 | 1741.1 | 179.92 | 762.5 | |
500 | 0 | 1316 | 181 | 2378.3 | 1318.3 | 2293.3 | 177.93 | 1030.9 | |
600 | 0 | 1597.8 | 360 | 2855.6 | 1515.6 | 2737.8 | 175.79 | 1211.2 | |
700 | 0 | 2296.3 | 426 | 3262.4 | 2094.1 | 3151.5 | 164.04 | 1881.5 | |
800 | 0 | 2589.2 | 363 | 3698.7 | 2515.5 | 3560.75 | 173.05 | 2232.5 | |
900 | 0 | 2849.8 | 147 | 3994.4 | 2842.3 | 3757.9 | 162.14 | 2588.6 | |
1000 | 0 | 3098 | 243 | 4431 | 2914 | 4284 | 171.59 | 2975.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lăcătușu, F.; Ionita, A.D.; Lăcătușu, M.; Olteanu, A. Performance Evaluation of Information Gathering from Edge Devices in a Complex of Smart Buildings. Sensors 2022, 22, 1002. https://doi.org/10.3390/s22031002
Lăcătușu F, Ionita AD, Lăcătușu M, Olteanu A. Performance Evaluation of Information Gathering from Edge Devices in a Complex of Smart Buildings. Sensors. 2022; 22(3):1002. https://doi.org/10.3390/s22031002
Chicago/Turabian StyleLăcătușu, Florin, Anca Daniela Ionita, Marian Lăcătușu, and Adriana Olteanu. 2022. "Performance Evaluation of Information Gathering from Edge Devices in a Complex of Smart Buildings" Sensors 22, no. 3: 1002. https://doi.org/10.3390/s22031002
APA StyleLăcătușu, F., Ionita, A. D., Lăcătușu, M., & Olteanu, A. (2022). Performance Evaluation of Information Gathering from Edge Devices in a Complex of Smart Buildings. Sensors, 22(3), 1002. https://doi.org/10.3390/s22031002