Distributed Strain Monitoring Using Nanocomposite Paint Sensing Meshes
Abstract
:1. Introduction
2. Background: Electrical Impedance Tomography
2.1. Forward Problem
2.2. Inverse Problem
3. Experimental Details
3.1. Nanocomposite Paint
3.1.1. Materials
3.1.2. Spray Coating
3.2. Strain Sensing Characterization
3.3. Sensing Mesh ERT Validation
3.3.1. Distributed Strain Monitoring
3.3.2. Sensing Mesh Crack Identification
4. Results and Discussion
4.1. Nanocomposite Paint Formulations
4.2. Nanocomposite Paint Strain Sensing Properties
4.3. Sensing Mesh for Distributed Strain Monitoring
4.4. Crack Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sohn, H.; Farrar, C.R.; Hemez, F.; Czarnecki, J. A Review of Structural Health Monitoring Literature 1996–2001; Los Alamos National Laboratory: Los Alamos, NM, USA, 2003; Volume 1. [Google Scholar]
- Rolfe, S.T.; Barsom, J.M. Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics; ASTM International: West Conshohocken, PA, USA, 1977. [Google Scholar]
- Murray, W.M.; Miller, W.R. The Bonded Electrical Resistance Strain Gage: An Introduction; Oxford University Press. Inc.: New York, NY, USA, 1992. [Google Scholar]
- Hannah, R.L.; Reed, S.E. Strain Gage Users’ Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Yao, Y.; Glisic, B. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics. Sensors 2015, 15, 8088–8108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zymelka, D.; Togashi, K.; Kobayashi, T. Carbon-based Printed Strain Sensor Array for Remote and Automated Structural Health Monitoring. Smart Mater. Struct. 2020, 29, 105022. [Google Scholar] [CrossRef]
- Hill, K.; Meltz, G. Fiber Bragg Grating Technology Fundamentals and Overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Kim, J.; Tong, Y.; Thompson, E.G.; Jiang, S.; Feng, Z.; Yu, L.; Wang, J.; Ha, D.S.; et al. Thermally Drawn Stretchable Electrical and Optical Fiber Sensors for Multimodal Extreme Deformation Sensing. Adv. Opt. Mater. 2021, 9, 2001815. [Google Scholar] [CrossRef]
- Loh, K.J.; Azhari, F. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology. JOM 2012, 64, 793–801. [Google Scholar] [CrossRef]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.L.; Li, J.H. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [Google Scholar]
- Dai, H.; Thostenson, E.T.; Schumacher, T. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites. Sensors 2015, 15, 17728–17747. [Google Scholar] [CrossRef] [Green Version]
- Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E.V. Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing. Nanotechnology 2004, 15, 379–382. [Google Scholar] [CrossRef]
- Loh, K.; Kim, J.; Lynch, J.P.; Kam, N.W.S.; Kotov, N. Multifunctional Layer-By-Layer Carbon Nanotube–Polyelectrolyte Thin Films for Strain and Corrosion Sensing. Smart Mater. Struct. 2007, 16, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.-C.; Loh, K.; Lynch, J.P. Spatial Conductivity Mapping of Carbon Nanotube Composite Thin Films by Electrical Impedance Tomography for Sensing Applications. Nanotechnology 2007, 18, 315501. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.J.; Hou, T.-C.; Lynch, J.P.; Kotov, N.A. Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. J. Nondestr. Eval. 2009, 28, 9–25. [Google Scholar] [CrossRef]
- Hou, T.-C.; Lynch, J.P. Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures. J. Intell. Mater. Syst. Struct. 2009, 20, 1363–1379. [Google Scholar] [CrossRef] [Green Version]
- Loyola, B.R.; La Saponara, V.; Loh, K.; Briggs, T.M.; O’Bryan, G.; Skinner, J.L. Spatial Sensing Using Electrical Impedance Tomography. IEEE Sens. J. 2013, 13, 2357–2367. [Google Scholar] [CrossRef]
- Loyola, B.R.; Briggs, T.M.; Arronche, L.; Loh, K.J.; La Saponara, V.; O’Bryan, G.; Skinner, J.L. Detection of Spatially Distributed Damage in Fiber-Reinforced Polymer Composites. Struct. Health Monit. 2013, 12, 225–239. [Google Scholar] [CrossRef]
- Hallaji, M.; Pour-Ghaz, M. A New Sensing Skin for Qualitative Damage Detection in Concrete Elements: Rapid Difference Imaging with Electrical Resistance Tomography. NDT E Int. 2014, 68, 13–21. [Google Scholar] [CrossRef]
- Hallaji, M.; Seppänen, A.; Pour-Ghaz, M. Electrical Impedance Tomography-Based Sensing Skin for Quantitative Imaging of Damage in Concrete. Smart Mater. Struct. 2014, 23, 085001. [Google Scholar] [CrossRef]
- Tallman, T.; Gungor, S.; Wang, K.; Bakis, C. Tactile Imaging and Distributed Strain Sensing in Highly Flexible Carbon Nanofiber/Polyurethane Nanocomposites. Carbon 2015, 95, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Vella, G.; Yu, I.-N.; Loh, C.-H.; Chiang, W.-H.; Loh, K.J. Graphene Sensing Meshes for Densely Distributed Strain Field Monitoring. Struct. Health Monit. 2020, 19, 1323–1339. [Google Scholar] [CrossRef]
- Ammari, H. An Introduction to Mathematics of Emerging Biomedical Imaging; Springer: Berlin/Heidelberg, Germany, 2008; Volume 62. [Google Scholar]
- Dai, H.; Gallo, G.J.; Schumacher, T.; Thostenson, E.T. A Novel Methodology for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-Based Composite Sensor Combined with Electrical Impedance Tomography. J. Nondestr. Eval. 2016, 35, 26. [Google Scholar] [CrossRef]
- Holder, D.S. Electrical Impedance Tomography: Methods, History and Applications; CRC Press: London, UK, 2004. [Google Scholar]
- Murai, T.; Kagawa, Y. Electrical Impedance Computed Tomography Based on a Finite Element Model. IEEE Trans. Biomed. Eng. 1985, 32, 177–184. [Google Scholar] [CrossRef]
- Polydorides, N. Image Reconstruction Algorithms for Soft-Field Tomography. Ph.D. Thesis, UMIST, Manchester, UK, 2002. [Google Scholar]
- Kaipio, J.P.; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M. Statistical Inversion and Monte Carlo Sampling Methods in Electrical Impedance Tomography. Inverse Probl. 2000, 16, 1487–1522. [Google Scholar] [CrossRef]
- Adler, A.; Guardo, R. Electrical Impedance Tomography: Regularized Imaging and Contrast Detection. IEEE Trans. Med. Imaging 1996, 15, 170–179. [Google Scholar] [CrossRef]
- Vauhkonen, M. Electrical Impedance Tomography and Prior Information. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, 1997. [Google Scholar]
- Cheney, M.; Isaacson, D.; Newell, J.C.; Simske, S.; Goble, J. NOSER: An Algorithm for Solving the Inverse Conductivity Problem. Int. J. Imaging Syst. Technol. 1990, 2, 66–75. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013; Volume 328. [Google Scholar]
- Adler, A.; Dai, T.; Lionheart, W. Temporal Image Reconstruction in Electrical Impedance Tomography. Physiol. Meas. 2007, 28, S1–S11. [Google Scholar] [CrossRef] [Green Version]
- Graham, B.M.; Adler, A. Objective Selection of Hyperparameter for EIT. Physiol. Meas. 2006, 27, S65–S79. [Google Scholar] [CrossRef] [PubMed]
- Baratha, K.V.; Nourry, A.; Pilard, J.-F. Synthesis of NR based Polyurethanes containing phosphorylated polymers as chain extenders. Eur. Polym. J. 2015, 70, 317–330. [Google Scholar] [CrossRef]
- Chernyak, S.A.; Ivanov, A.S.; Maslakov, K.I.; Egorov, A.V.; Shen, Z.; Savilov, S.S.; Lunin, V.V. Oxidation, Defunctionalization and Catalyst Life Cycle of Carbon Nanotubes: A Raman Spectroscopy View. Phys. Chem. Chem. Phys. 2017, 19, 2276–2285. [Google Scholar] [CrossRef]
- Mortensen, L.P.; Ryu, D.H.; Zhao, Y.J.; Loh, K.J. Rapid Assembly of Multifunctional Thin Film Sensors for Wind Turbine Blade Monitoring; Trans Tech Publication Ltd.: Freienbach, Switzerland, 2013; Volume 569, pp. 515–522. [Google Scholar] [CrossRef]
- Wang, L.; Loh, K.J. Spray-Coated Carbon Nanotube-Latex Strain Sensors. Sci. Lett. J. 2016, 5, 234. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shu, Y.; Lin, Y.-A.; Zhao, Y.; Yeh, Y.-J.; Chiang, W.-H.; Loh, K.J. Distributed Strain Monitoring Using Nanocomposite Paint Sensing Meshes. Sensors 2022, 22, 812. https://doi.org/10.3390/s22030812
Li S, Shu Y, Lin Y-A, Zhao Y, Yeh Y-J, Chiang W-H, Loh KJ. Distributed Strain Monitoring Using Nanocomposite Paint Sensing Meshes. Sensors. 2022; 22(3):812. https://doi.org/10.3390/s22030812
Chicago/Turabian StyleLi, Sijia, Yening Shu, Yun-An Lin, Yingjun Zhao, Yi-Jui Yeh, Wei-Hung Chiang, and Kenneth J. Loh. 2022. "Distributed Strain Monitoring Using Nanocomposite Paint Sensing Meshes" Sensors 22, no. 3: 812. https://doi.org/10.3390/s22030812
APA StyleLi, S., Shu, Y., Lin, Y. -A., Zhao, Y., Yeh, Y. -J., Chiang, W. -H., & Loh, K. J. (2022). Distributed Strain Monitoring Using Nanocomposite Paint Sensing Meshes. Sensors, 22(3), 812. https://doi.org/10.3390/s22030812