An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiscale Sampling of GLCMs for Multiscale Features
2.2. Analyze Group-Specific Information
2.3. Adaptive Learning Model for Fusing Multi-Scale Features
3. Results
3.1. Polyp Dataset
3.1.1. Regions of Interest
3.1.2. Dataset Evaluation
3.1.3. Settings
3.2. The Outcomes of the Proposed Method
3.3. Comparisons with State-of-the-Art Models
- Extended Haralick Measures (eHM)—this descriptor includes all the 364 variables derived from the 28 HMs over the 13 directions and disregards the multi-scale nature [11];
- Post-KL Transformation (KLT) eHMs (eHM+KLT)—this method combines eHMs and KLT to address the variation problem due to the multi-scale nature by the KLT [11];
- The SVM Method with Recursive Feature Elimination (SVM-RFE)—another typical method in feature selection, including feature ranking and feature selection for consideration of variation among feature datasets [37];
- The Dependence Guided Unsupervised Feature Selection (DGUFS)—a new feature selection method applies the interdependence among original data, features, and labels in a joint learning framework to pick features [28];
- VGG16—a typical deep learning method, which is fed by 20 salient slices extracted from every polyp, where the feature extraction and selection operations are considered as learning processes [40];
- GLCM-CNN—the state-of-the-art of texture based deep learning model on the task of polyp diagnosis. It takes the whole 13-directional GLCM as input, ignoring the correlations among different groups to make decisions [40]. The network structure is optimized to fit the polyp dataset used.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Facts & Figures 2018; American Cancer Society: Atlanta, GA, USA, 2018.
- Levin, B.; Lieberman, D.A.; McFarland, B.; Andrews, K.S.; Brooks, D.; Bond, J.; Dash, C.; Giardiello, F.M.; Glick, S.; Johnson, D. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 2008, 134, 1570–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, D.A.; Rex, D.K.; Winawer, S.J.; Giardiello, F.M.; Johnson, D.A.; Levin, T.R. Guidelines for colonoscopy surveillance after screening and polypectomy: A consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2012, 143, 844–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Richards, R.J. Virtual colonoscopy versus optical colonoscopy. Expert Opin. Med. Diagn. 2010, 4, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Goyal, H.; Mann, R.; Gandhi, Z.; Perisetti, A.; Ali, A.; Aman Ali, K.; Sharma, N.; Saligram, S.; Tharian, B.; Inamdar, S. Scope of artificial intelligence in screening and diagnosis of colorectal cancer. J. Clin. Med. 2020, 9, 3313. [Google Scholar] [CrossRef]
- Song, B.; Zhang, G.; Lu, H.; Wang, H.; Zhu, W.; Pickhardt, P.J.; Liang, Z. Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 1021–1031. [Google Scholar] [CrossRef]
- Buvat, I.; Orlhac, F.; Soussan, M. Tumor texture analysis in PET: Where do we stand? J. Nucl. Med. 2015, 56, 1642–1644. [Google Scholar] [CrossRef] [Green Version]
- Chicklore, S.; Goh, V.; Siddique, M.; Roy, A.; Marsden, P.K.; Cook, G.J. Quantifying tumour heterogeneity in 18 F-FDG PET/CT imaging by texture analysis. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 133–140. [Google Scholar] [CrossRef]
- Cao, W.; Pomeroy, M.J.; Pickhardt, P.J.; Barish, M.A.; Stanly, S., III; Liang, Z. A local geometrical metric-based model for polyp classification. In Proceedings of the Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, CA, USA, 16–21 February 2019; p. 1095014. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liang, Z.; Song, B.; Han, H.; Pickhardt, P.J.; Zhu, W.; Duan, C.; Zhang, H.; Barish, M.A.; Lascarides, C.E. Texture feature extraction and analysis for polyp differentiation via computed tomography colonography. IEEE Trans. Med. Imaging 2016, 35, 1522–1531. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Coats, M.; Zhang, J.; McKenna, S.J. Discriminating dysplasia: Optical tomographic texture analysis of colorectal polyps. Med. Image Anal. 2015, 26, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 40. [Google Scholar]
- Wang, Y.; Pomeroy, M.; Cao, W.; Gao, Y.; Sun, E.; Stanley, S., III; Bucobo, J.C.; Liang, Z. Polyp classification by Weber’s Law as texture descriptor for clinical colonoscopy. In Proceedings of the Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, CA, USA, 16–21 February 2019; p. 109502V. [Google Scholar]
- Onizawa, N.; Katagiri, D.; Matsumiya, K.; Gross, W.J.; Hanyu, T. Gabor filter based on stochastic computation. IEEE Signal Processing Lett. 2015, 22, 1224–1228. [Google Scholar] [CrossRef]
- Wimmer, G.; Gadermayr, M.; Kwitt, R.; Häfner, M.; Tamaki, T.; Yoshida, S.; Tanaka, S.; Merhof, D.; Uhl, A. Training of polyp staging systems using mixed imaging modalities. Comput. Biol. Med. 2018, 102, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, G.; Tamaki, T.; Tischendorf, J.J.; Häfner, M.; Yoshida, S.; Tanaka, S.; Uhl, A. Directional wavelet based features for colonic polyp classification. Med. Image Anal. 2016, 31, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zheng, Y.; Poon, C.C.; Shen, D.; Lau, J.Y. Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. Pattern Recognit. 2018, 83, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shan, S.; He, C.; Zhao, G.; Pietikäinen, M.; Chen, X.; Gao, W. WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1705–1720. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef]
- Fong, S.; Deb, S.; Yang, X.-S.; Li, J. Metaheuristic swarm search for feature selection in life science classification. IEEE IT Prof. Mag. 2014, 16, 24–29. [Google Scholar] [CrossRef]
- Ma, S.; Huang, J. Penalized feature selection and classification in bioinformatics. Brief. Bioinform. 2008, 9, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Cekik, R.; Uysal, A.K. A novel filter feature selection method using rough set for short text data. Expert Syst. Appl. 2020, 160, 113691. [Google Scholar] [CrossRef]
- Roffo, G.; Melzi, S.; Cristani, M. Infinite feature selection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4202–4210. [Google Scholar]
- Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A new hybrid filter–wrapper feature selection method for clustering based on ranking. Neurocomputing 2016, 214, 866–880. [Google Scholar] [CrossRef]
- Cai, D.; Zhang, C.; He, X. Unsupervised feature selection for multi-cluster data. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–28 July 2010; pp. 333–342. [Google Scholar]
- Guo, J.; Zhu, W. Dependence guided unsupervised feature selection. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Li, J.; Dong, W.; Meng, D. Grouped gene selection of cancer via adaptive sparse group lasso based on conditional mutual information. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 15, 2028–2038. [Google Scholar] [CrossRef] [PubMed]
- Roffo, G.; Melzi, S.; Castellani, U.; Vinciarelli, A. Infinite latent feature selection: A probabilistic latent graph-based ranking approach. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1398–1406. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zeng, H.; Cheung, Y.-M. Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1532–1547. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, M.; Liu, Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA J. Autom. Sin. 2019, 6, 703–715. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Z.; Ji, S.; Tao, D.; Tan, T. Feature selection based on structured sparsity: A comprehensive study. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1490–1507. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 2015, 20, 606–626. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Kaur, P. A Comprehensive Analysis of Nature-Inspired Meta-Heuristic Techniques for Feature Selection Problem. Arch. Comput. Methods Eng. 2021, 28, 1103–1127. [Google Scholar] [CrossRef]
- Cao, W.; Liang, Z.J.; Pomeroy, M.J.; Ng, K.; Zhang, S.; Gao, Y.; Pickhardt, P.J.; Barish, M.A.; Abbasi, A.F.; Lu, H. Multilayer feature selection method for polyp classification via computed tomographic colonography. J. Med. Imaging 2019, 6, 044503. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Tan, J.; Gao, Y.; Liang, Z.; Cao, W.; Pomeroy, M.J.; Huo, Y.; Li, L.; Barish, M.A.; Abbasi, A.F.; Pickhardt, P.J. 3D-GLCM CNN: A 3-dimensional gray-level Co-occurrence matrix-based CNN model for polyp classification via CT colonography. IEEE Trans. Med. Imaging 2019, 39, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Pestov, V. Is the k-NN classifier in high dimensions affected by the curse of dimensionality? Comput. Math. Appl. 2013, 65, 1427–1437. [Google Scholar] [CrossRef]
- Nembrini, S.; König, I.R.; Wright, M.N. The revival of the Gini importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickhardt, P.J. Screening CT colonography: How I do it. Am. J. Roentgenol. 2007, 189, 290–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Zhao, J. An improved method of automatic colon segmentation for virtual colon unfolding. Comput. Methods Programs Biomed. 2013, 109, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Radius = 1 | |||
---|---|---|---|
Direction group ID | |||
Number of GLCM Directions | 3 | 6 | 4 |
Descriptor group ID | |||
Number of variables | 84 | 168 | 112 |
Structure | Type | Kernel Size | # of Kernels/ Channels/Neurons/Strides | Activation |
---|---|---|---|---|
Layer 1 | 2D Convolution | 3 × 3 | 64 (stride 1) | ReLU |
Layer 2 | Batch Normalization | 64 | ||
Layer 3 | Maxpool | 2 × 2 | (stride 2) | |
Layer 4 | 2D Convolution | 3 × 3 | 64 (stride 1) | ReLU |
Layer 5 | Batch Normalization | 64 | ||
Layer 6 | Maxpool | 2 × 2 | (stride 2) | |
Layer 7 | Dense | 1000 | ReLU | |
Layer 8 | Dense | 1000 | ReLU | |
Layer 10 | Dense | 2 | softmax |
Pathology | Count | Class | Male: Female | Average Age (yrs) | Average Size (mm) |
---|---|---|---|---|---|
Tubular Adenoma | 2 | 0 | 2:0 | 69.8 | 35.0 |
Serrated Adenoma | 3 | 0 | 2:1 | 55.2 | 34.3 |
Tubulovillous Adenoma | 21 | 0 | 11:10 | 64.4 | 36.9 |
Villous Adenoma | 5 | 0 | 4:1 | 67.4 | 55 |
Adenocarcinoma | 32 | 1 | 12:20 | 69.9 | 43.9 |
Group ID | GLCM Directions | MGHM AUC (Mean ± STD) | MG-CNN AUC (Mean ± STD) |
---|---|---|---|
3 | 0.846 ± 0.098 | 0.895 ± 0.064 | |
6 | 0.875 ± 0.101 | 0.889 ± 0.061 | |
4 | 0.892 ± 0.098 | 0.871 ± 0.074 |
Descriptor-ID | ||||||
---|---|---|---|---|---|---|
AUC Score | 0.854 | 0.875 | 0.892 | |||
Sub-ID | ||||||
Number of Variables | 65 | 19 | 3 | 165 | 6 | 106 |
Layer | Baseline | Candidate | Descriptor Pool (DP) | |||
---|---|---|---|---|---|---|
Source | Variables | AUC (Mean ± STD) | Source | Selected Variables | ||
6 | 0.892 ± 0.098 | 4 | ||||
10 | 0.916 ± 0.038 | 3 | ||||
13 | 0.919 ± 0.036 | 4 | ||||
Final Descriptor | 17 | 0.925 ± 0.035 | - |
Layer | Baseline | Candidate | Descriptor Pool (DP) | |||
---|---|---|---|---|---|---|
Source | GLCMs | AUC (Mean ± STD) | Source | GLCMs | ||
3 | 0.895 ± 0.064 | 4 | ||||
9 | 0.904 ± 0.047 | 3 | ||||
Final Results | 13 | 0.909 ± 0.051 |
Method | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
eHM | 0.886 | 0.797 | 0.868 | 0.726 |
eHM+KLT | 0.907 | 0.814 | 0.781 | 0.848 |
AlexNet (image) | 0.779 | 0.778 | 0.831 | 0.726 |
VGG16 (image) | 0.823 | 0.741 | 0.714 | 0.769 |
LASSO | 0.836 | 0.748 | 0.791 | 0.706 |
SVM-RFE | 0.856 | 0.783 | 0.775 | 0.791 |
DGUFS | 0.866 | 0.806 | 0.836 | 0.776 |
GLCM CNN | 0.900 | 0.856 | 0.843 | 0.868 |
MG-CNN | 0.909 | 0.864 | 0.866 | 0.862 |
MGHM | 0.925 | 0.884 | 0.891 | 0.878 |
Method | eHM | eHM+KLT | AlexNet | VGG16 | LASSO | SVM-RFE | DGUFS | GLCM CNN |
---|---|---|---|---|---|---|---|---|
MGHM | <<0.05 | 0.0179 | <<0.05 | <<0.05 | <<0.05 | <<0.05 | <<0.05 | 0.0204 |
MG-CNN | <<0.05 | 0.0411 | <<0.05 | <<0.05 | <<0.05 | <<0.05 | <<0.05 | 0.0398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Pomeroy, M.J.; Zhang, S.; Tan, J.; Liang, Z.; Gao, Y.; Abbasi, A.F.; Pickhardt, P.J. An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography. Sensors 2022, 22, 907. https://doi.org/10.3390/s22030907
Cao W, Pomeroy MJ, Zhang S, Tan J, Liang Z, Gao Y, Abbasi AF, Pickhardt PJ. An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography. Sensors. 2022; 22(3):907. https://doi.org/10.3390/s22030907
Chicago/Turabian StyleCao, Weiguo, Marc J. Pomeroy, Shu Zhang, Jiaxing Tan, Zhengrong Liang, Yongfeng Gao, Almas F. Abbasi, and Perry J. Pickhardt. 2022. "An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography" Sensors 22, no. 3: 907. https://doi.org/10.3390/s22030907
APA StyleCao, W., Pomeroy, M. J., Zhang, S., Tan, J., Liang, Z., Gao, Y., Abbasi, A. F., & Pickhardt, P. J. (2022). An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography. Sensors, 22(3), 907. https://doi.org/10.3390/s22030907