Automatic and Efficient Fall Risk Assessment Based on Machine Learning
Abstract
:1. Introduction
1.1. The Berg Balance Scale
2. Automated Fall Risk Assessment System
- Motion tracking system, including 3D cameras;
- Automatic BBS score prediction algorithms;
- Final fall risk assessment using machine learning.
3. Motion Capture and Tracking
4. Predicting BBS Scores Using Machine Learning
4.1. Data Collection
4.2. Feature Extraction
4.3. Training
4.4. Automatic BBS Score Prediction Results
- Turn 360° (Task #11);
- Alternate feet on step (Task #12);
- Transfers between chairs (Task #5);
- Reaching forward with outstretched arm (Task #8).
4.5. Statistical Analysis
5. Efficient Fall Risk Evaluation Algorithm
5.1. Preprocessing: Building a Dataset of Fall Risk Predictors
5.2. Efficient Re-Ordering of the BBS Tasks
- Method 1. The next task is selected as that which when augmented to creates a subset whose predictor has the highest accuracy over the complete training set.
- Method 2. is determined as above, but with the accuracy score of the augmented subset predictor calculated only on the training examples for which the predictor gives a confidence below the confidence threshold , i.e., the ’s for which the classifier did not yet make a decision.
- Method 3. The third method is an adaptive method that depends on the scores of the patient being tested for BBS. is determined as above, but the ith training example’s contribution to the sum is weighted by its similarity to the scores of the patient. The greater the similarity, the higher the weight is.
- Method 4. The fourth method extends the third method by considering only the examples in the training set for which the algorithm correctly classified the example.
5.3. Results: Efficient BBS
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- McCarthy, M. Falls are leading cause of injury deaths among older people, US study finds. BMJ 2016, 354, i5190. [Google Scholar] [CrossRef]
- Bergen, G. Falls and fall injuries among adults aged ≥ 65 years—United States, 2014. Morb. Mortal. Wkly. Rep. 2016, 65, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerwiński, E.; Białoszewski, D.; Borowy, P.; Kumorek, A.; Białoszewski, A. Epidemiology, clinical significance, costs and fall prevention in elderly people. Ortop. Traumatol. Rehabil. 2008, 10, 419–428. [Google Scholar]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.M.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 9, 2. [Google Scholar] [CrossRef]
- Stevens, J.A.; Lee, R. The potential to reduce falls and avert costs by clinically managing fall risk. Am. J. Prev. Med. 2018, 55, 290–297. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphine, S.; Williams, I.J.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, I.J.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83, S7–S11. [Google Scholar]
- Masalha, A.; Eichler, N.; Raz, S.; Toledano-Shubi, A.; Niv, D.; Shimshoni, I.; Hel-Or, H. Predicting Fall Probability Based on a Validated Balance Scale. In Proceedings of the Computer Vision and Pattern Recognition (CVPR) CVPM Workshop, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Soubra, R.; Chkeir, A.; Novella, J.L. A Systematic Review of Thirty-One Assessment Tests to Evaluate Mobility in Older Adults. BioMed Res. Int. 2019, 2019, 1354362. [Google Scholar] [CrossRef]
- Butland, R.J.; Pang, J.; Gross, E.R.; Woodcock, A.A.; Geddes, D.M. Two-, six-, and 12-minute walking tests in respiratory disease. Br. Med. J. (Clin. Res. Ed.) 1982, 284, 1607. [Google Scholar] [CrossRef] [Green Version]
- Flansbjer, U.B.; Holmbäck, A.M.; Downham, D.; Patten, C.; Lexell, J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar] [PubMed] [Green Version]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Baldwin, M.; Polissar, N.L.; Gruber, W. Predicting the probability for falls in community-dwelling older adults. Phys. Ther. 1997, 77, 812–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.; Rikli, R.; Beam, W. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Y.; Wei, S.H.; Chen, P.Y.; Tsai, M.W.; Cheng, I.C.; Liu, D.H.; Kao, C.L. Can sit-to-stand lower limb muscle power predict fall status? Gait Posture 2014, 40, 403–407. [Google Scholar] [CrossRef]
- Buatois, S.; Miljkovic, D.; Manckoundia, P.; Gueguen, R.; Miget, P.; Vançon, G.; Perrin, P.; Benetos, A. Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. J. Am. Geriatr. Soc. 2008, 56, 1575–1577. [Google Scholar] [CrossRef]
- Mathias, S.; Nayak, U.; Isaacs, B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- Bloch, M.L.; Jønsson, L.R.; Kristensen, M.T. Introducing a third timed up & go test trial improves performances of hospitalized and community-dwelling older individuals. J. Geriatr. Phys. Ther. 2017, 40, 121. [Google Scholar]
- Fregly, A.R.; Graybiel, A. An ataxia test battery not requiring rails. Aerosp. Med. 1968, 39, 277–282. [Google Scholar] [PubMed]
- Clark, M.S. The Unilateral Forefoot Balance Test: Reliability and validity for measuring balance in late midlife women. N. Z. J. Physiother. 2007, 35, 110. [Google Scholar]
- Rogers, J. Romberg and his test. J. Laryngol. Otol. 1980, 94, 1401–1404. [Google Scholar] [CrossRef]
- Rossiter-Fornoff, J.E.; Wolf, S.L.; Wolfson, L.I.; Buchner, D.M.; Group, F. A cross-sectional validation study of the FICSIT common data base static balance measures. J. Gerontol. Ser. Biol. Sci. Med. Sci. 1995, 50, M291–M297. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.D.; Bernhardt, J.; McGann, A.M.; Maltese, D.; Berkovits, D. A new test of dynamic standing balance for stroke patients: Reliability, validity and comparison with healthy elderly. Physiother. Can. 1996, 48, 257–262. [Google Scholar] [CrossRef]
- Dite, W.; Temple, V.A. Four Square Step Test (FSST). Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef]
- Moore, M.; Barker, K. The validity and reliability of the four square step test in different adult populations: A systematic review. Syst. Rev. 2017, 6, 187. [Google Scholar] [CrossRef]
- Neves, L. The Y Balance Test—How and Why to Do it? Int. Phys. Med. Rehabil. J. 2017, 2, 48. [Google Scholar]
- Tinetti, M.E.; Williams, T.F.; Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [Green Version]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Viveiro, L.A.P.; Gomes, G.C.V.; Bacha, J.M.R.; Junior, N.C.; Kallas, M.E.; Reis, M.; Jacob Filho, W.; Pompeu, J.E. Reliability, Validity, and Ability to Identity Fall Status of the Berg Balance Scale, Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest in Older Adults Who Live in Nursing Homes. J. Geriatr. Phys. Ther. 2019, 42, E45–E54. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.Y.; Chien, C.W.; Hsueh, I.P.; Sheu, C.F.; Wang, C.H.; Hsieh, C.L. Developing a short form of the Berg Balance Scale for people with stroke. Phys. Ther. 2006, 86, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Sosnoff, J.J. Novel sensing technology in fall risk assessment in older adults: A systematic review. BMC Geriatr. 2018, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Luque, R.; Casilari, E.; Morón, M.J.; Redondo, G. Comparison and characterization of android-based fall detection systems. Sensors 2014, 14, 18543–18574. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Y.; Hu, H.; Tian, B. New fast fall detection method based on spatio-temporal context tracking of head by using depth images. Sensors 2015, 15, 23004–23019. [Google Scholar] [CrossRef] [Green Version]
- Aslan, M.; Sengur, A.; Xiao, Y.; Wang, H.; Ince, M.C.; Ma, X. Shape feature encoding via fisher vector for efficient fall detection in depth-videos. Appl. Soft Comput. 2015, 37, 1023–1028. [Google Scholar] [CrossRef]
- Vallabh, P.; Malekian, R. Fall detection monitoring systems: A comprehensive review. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1809–1833. [Google Scholar] [CrossRef]
- Kwolek, B.; Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 2014, 117, 489–501. [Google Scholar] [CrossRef]
- Microsoft. Kinect V2 RGB-D Sensor Website. Available online: https://developer.microsoft.com/en-us/windows/kinect (accessed on 2 January 2022).
- Sarbolandi, H.; Lefloch, D.; Kolb, A. Kinect range sensing: Structured-light versus Time-of-Flight Kinect. Comput. Vis. Image Underst. 2015, 139, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kargar, A.B.; Mollahosseini, A.; Struemph, T.; Pace, W.; Nielsen, R.D.; Mahoor, M.H. Automatic measurement of physical mobility in Get-Up-and-Go Test using kinect sensor. In Proceedings of the International Conference, IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3492–3495. [Google Scholar]
- Geerse, D.J.; Coolen, B.H.; Roerdink, M. Kinematic validation of a multi-Kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLoS ONE 2015, 10, e0139913. [Google Scholar] [CrossRef] [Green Version]
- Eltoukhy, M.; Kuenze, C.; Oh, J.; Signorile, J. Balance Assessment using Microsoft Xbox Kinect: 1136 Board number 315. Med. Sci. Sport. Exerc. 2017, 49, 315. [Google Scholar] [CrossRef]
- Clark, R.; Vernon, S.; Mentiplay, B.; Miller, K.; Mcginley, J.; Pua, Y.; Paterson, K.; Bower, K. Instrumenting gait assessment using the Kinect in people with stroke: Reliability and association with balance tests. J. Neuroeng. Rehabil. 2015, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Eichler, N.; Hel-Or, H.; Shimshoni, I.; Itah, D.; Gross, B.; Raz, S. 3D motion capture system for assessing patient motion during Fugl-Meyer stroke rehabilitation testing. IET Comput. Vis. 2018, 12, 963–975. [Google Scholar] [CrossRef] [Green Version]
- Bogle Thorbahn, L.D.; Newton, R.A. Use of the Berg Balance Test to predict falls in elderly persons. Phys. Ther. 1996, 76, 576–583. [Google Scholar] [CrossRef]
- Newstead, A.H.; Hinman, M.R.; Tomberlin, J.A. Reliability of the Berg Balance Scale and balance master limits of stability tests for individuals with brain injury. J. Neurol. Phys. Ther. 2005, 29, 18–23. [Google Scholar] [CrossRef]
- Donoghue, D.; Stokes, E.K. How much change is true change? The minimum detectable change of the Berg Balance Scale in elderly people. J. Rehabil. Med. 2009, 41, 343–346. [Google Scholar] [CrossRef] [Green Version]
- Hiengkaew, V.; Jitaree, K.; Chaiyawat, P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed “Up & Go” Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 2012, 93, 1201–1208. [Google Scholar]
- Flansbjer, U.B.; Blom, J.; Brogårdh, C. The reproducibility of Berg Balance Scale and the Single-leg Stance in chronic stroke and the relationship between the 2 tests. PM&R 2012, 4, 165–170. [Google Scholar]
- Steffen, T.; Seney, M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified Parkinson disease rating scale in people with parkinsonism. Phys. Ther. 2008, 88, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Leddy, A.L.; Crowner, B.E.; Earhart, G.M. Functional gait assessment and balance evaluation system test: Reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall. Phys. Ther. 2011, 91, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Conradsson, M.; Lundin-Olsson, L.; Lindelöf, N.; Littbrand, H.; Malmqvist, L.; Gustafson, Y.; Rosendahl, E. Berg balance scale: Intrarater test-retest reliability among older people dependent in activities of daily living and living in residential care facilities. Phys. Ther. 2007, 87, 1155–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holbein-Jenny, M.A.; Billek-Sawhney, B.; Beckman, E.; Smith, T. Balance in personal care home residents: A comparison of the Berg Balance Scale, the Multi-Directional Reach Test, and the Activities-specific Balance Confidence Scale. J. Geriatr. Phys. Ther. 2005, 28, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, P.L.; Nova, I.C.; Perracini, M.R.; Sacramento, D.R.; Cardoso, F.; Ferraz, H.B.; Teixeira, A.L. Validation of the Brazilian version of the Berg balance scale for patients with Parkinson’s disease. Arq.-Neuro-Psiquiatr. 2009, 67, 831–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.F.; Hsueh, I.P.; Tang, P.F.; Sheu, C.F.; Hsieh, C.L. Analysis and comparison of the psychometric properties of three balance measures for stroke patients. Stroke 2002, 33, 1022–1027. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphinee, S.; Williams, J. The Balance Scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 1995, 27, 27–36. [Google Scholar]
- Wirz, M.; Müller, R.; Bastiaenen, C. Falls in persons with spinal cord injury: Validity and reliability of the Berg Balance Scale. Neurorehabilit. Neural Repair 2010, 24, 70–77. [Google Scholar] [CrossRef]
- Liaw, L.J.; Hsieh, C.L.; Hsu, M.J.; Chen, H.M.; Lin, J.H.; Lo, S.K. Test–retest reproducibility of two short-form balance measures used in individuals with stroke. Int. J. Rehabil. Res. 2012, 35, 256–262. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, M.K. The intra-and inter-rater reliabilities of the Short Form Berg Balance Scale in institutionalized elderly people. J. Phys. Ther. Sci. 2015, 27, 2733–2734. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, G.; Sheikh, S.G.; Chippala, P. Test-retest reliability of short form of berg balance scale in elderly people. Glo Adv. Res. J. Med. Med. Sci. 2012, 1, 139–144. [Google Scholar]
- Jogi, P.; Spaulding, S.J.; Zecevic, A.A.; Overend, T.J.; Kramer, J.F. Comparison of the original and reduced versions of the Berg Balance Scale and the Western Ontario and McMaster Universities Osteoarthritis Index in patients following hip or knee arthroplasty. Physiother. Can. 2011, 63, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansard, M.; Lee, S.; Choi, O.; Horaud, R.P. Time-of-Flight Cameras: Principles, Methods and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Shotton, J.; Sharp, T.; Kipman, A.; Fitzgibbon, A.; Finocchio, M.; Blake, A.; Cook, M.; Moore, R. Real-time human pose recognition in parts from single depth images. Commun. ACM 2013, 56, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Shao, L.; Xu, D.; Shotton, J. Enhanced Computer Vision With Microsoft Kinect Sensor: A Review. IEEE Trans. Cybern. 2013, 43, 1318–1334. [Google Scholar]
- Wang, Q.; Kurillo, G.; Ofli, F.; Bajcsy, R. Evaluation of Pose Tracking Accuracy in the First and Second Generations of Microsoft Kinect. In Proceedings of the International Conference on Healthcare Informatics (ICHI), Dallas, TX, USA, 21–23 October 2015; pp. 380–389. [Google Scholar]
- Eichler, N.; Hel-Or, H.; Shmishoni, I.; Itah, D.; Gross, B.; Raz, S. Non-invasive motion analysis for stroke rehabilitation using off the shelf 3d sensors. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Masalha, A. Predicting Fall Probability Based on a Validated Balance Scale. Master’s Thesis, University of Haifa, Haifa, Israel, 2020. [Google Scholar]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. PAMI 1998, 20, 832–844. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction error estimation: A comparison of resampling methods. Bioinformatics 2005, 21, 3301–3307. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. 2003. Available online: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 2 January 2022).
- Chizi, B.; Maimon, O. Dimension Reduction and Feature Selection. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 83–100. [Google Scholar]
- Chizi, B.; Rokach, L.; Maimon, O. A survey of feature selection techniques. In Encyclopedia of Data Warehousing and Miningn, 2nd ed.; IGI Global: Hershey, PA, USA, 2009; pp. 1888–1895. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chang, Y.W.; Hsieh, C.J.; Chang, K.W.; Ringgaard, M.; Lin, C.J. Training and testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res. 2010, 11, 1471–1490. [Google Scholar]
- Hahs-Vaughn, D.L.; Lomax, R.G. Statistical Concepts-A Second Course: A Second Course; Routledge: London, UK, 2013. [Google Scholar]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
BBS Task | Task Description | N | Samples per Class <0,1,2,3,4> | Accuracy | MSE | Recall | Precision | F1 |
---|---|---|---|---|---|---|---|---|
1 | Sitting to Standing | 102 | 0,0,0,66,36 | 87% | 0.18 | 0.87 | 0.88 | 0.87 |
2 | Standing Unsupported | 111 | 0,0,15,24,72 | 73% | 0.36 | 0.73 | 0.71 | 0.71 |
3 | Sitting with Back Unsupported | 112 | 0,0,0,0,0,112 | 100% | 0.0 | 1 | 1 | 1 |
4 | Standing to Sitting | 105 | 0,0,0,53,52 | 88% | 0.15 | 0.88 | 0.88 | 0.88 |
5 | Transfers | 96 | 0,0,22,39,35 | 72% | 0.36 | 0.72 | 0.72 | 0.72 |
6 | Standing Unsupported, Eyes Closed | 101 | 0,0,0,49,52 | 71% | 0.32 | 0.71 | 0.72 | 0.71 |
7 | Standing Unsupported, Feet Together | 106 | 13,13,0,33,47 | 72% | 0.37 | 0.72 | 0.72 | 0.72 |
8 | Reaching Forward | 75 | 0,17,0,24,34 | 73% | 0.51 | 0.73 | 0.72 | 0.72 |
9 | Pick up Object from the Floor | 99 | 7,0,0,39,53 | 72% | 0.31 | 0.72 | 0.74 | 0.70 |
10 | Look Behind Shoulders | 102 | 7,9,8,32,46 | 52% | 1.25 | 0.52 | 0.50 | 0.51 |
11 | Turn 360° | 100 | 14,26,20,7,33 | 66% | 0.60 | 0.66 | 0.62 | 0.64 |
12 | Alternate Feet on Step | 93 | 39,11,12,0,31 | 74% | 0.34 | 0.74 | 0.69 | 0.71 |
13 | Standing Unsupported, One Foot in Front | 93 | 30,14,30,0,19 | 68% | 0.54 | 0.68 | 0.64 | 0.64 |
14 | Standing on One Leg | 109 | 39,40,8,0,22 | 66% | 0.80 | 0.66 | 0.64 | 0.65 |
D | Min(A,D) | ML Prediction | |
---|---|---|---|
A | 0.981 | 0.989 | 0.839 |
D | 0.992 | 0.834 | |
Min(A,D) | 0.824 |
BBS Task | Accuracy (%) |
---|---|
9 | 85.5 |
7 | 81.4 |
6 | 81.2 |
11 | 80.8 |
8 | 80.0 |
4 | 77.8 |
5 | 77.4 |
12 | 76.2 |
1 | 74.2 |
10 | 72.6 |
2 | 70.7 |
13 | 67.5 |
14 | 67.3 |
3 | 50.8 |
Data | Method | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Physiotherapist | 1 | 9 | 11 | 8 | 7 | 5 | 13 | 10 | 1 | 2 | 3 | 4 | 6 | 12 | 14 |
2 | 9 | 11 | 8 | 7 | 5 | 12 | 10 | 2 | 3 | 1 | 6 | 13 | 4 | 14 | |
Automatic | 1 | 1 | 12 | 13 | 7 | 14 | 4 | 8 | 2 | 3 | 5 | 6 | 9 | 10 | 11 |
2 | 1 | 12 | 13 | 6 | 11 | 8 | 2 | 3 | 10 | 4 | 7 | 9 | 5 | 14 |
Data | Method | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Physiotherapist | 3 | 9 | 11 | 8 | 7 | 4 | 5 | 10 | 1 | 3 | 14 | 2 | 13 | 12 | 6 |
4 | 9 | 11 | 8 | 7 | 2 | 5 | 10 | 1 | 4 | 3 | 6 | 13 | 14 | 12 | |
Automatic | 3 | 1 | 12 | 13 | 11 | 5 | 4 | 9 | 2 | 10 | 14 | 8 | 7 | 6 | 3 |
4 | 1 | 12 | 13 | 11 | 4 | 5 | 7 | 10 | 14 | 8 | 2 | 9 | 3 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichler, N.; Raz, S.; Toledano-Shubi, A.; Livne, D.; Shimshoni, I.; Hel-Or, H. Automatic and Efficient Fall Risk Assessment Based on Machine Learning. Sensors 2022, 22, 1557. https://doi.org/10.3390/s22041557
Eichler N, Raz S, Toledano-Shubi A, Livne D, Shimshoni I, Hel-Or H. Automatic and Efficient Fall Risk Assessment Based on Machine Learning. Sensors. 2022; 22(4):1557. https://doi.org/10.3390/s22041557
Chicago/Turabian StyleEichler, Nadav, Shmuel Raz, Adi Toledano-Shubi, Daphna Livne, Ilan Shimshoni, and Hagit Hel-Or. 2022. "Automatic and Efficient Fall Risk Assessment Based on Machine Learning" Sensors 22, no. 4: 1557. https://doi.org/10.3390/s22041557
APA StyleEichler, N., Raz, S., Toledano-Shubi, A., Livne, D., Shimshoni, I., & Hel-Or, H. (2022). Automatic and Efficient Fall Risk Assessment Based on Machine Learning. Sensors, 22(4), 1557. https://doi.org/10.3390/s22041557