Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map
Abstract
:1. Introduction
- (1)
- Distinct from current fingerprinting technologies that are hardware-dependent, NF-Track is supported by a data-driven fingerprint map, which not only improves the efficiency of signal collection but also benefits online cellular location sequence map-matching.
- (2)
- On the basis of such fingerprint map, the proposed trajectory estimation algorithm is independent of either hardware-relevant information in conventional fingerprinting approaches or heuristic hypotheses that are widely leveraged by unsupervised methods. Therefore, NF-Track is suitable for being deployed over cloud computing backends where only cellular localization is available.
- (3)
- We conduct our experiments on a real-world urban dataset. The results demonstrated the significant advantages of our real-time trajectory estimation approach contrasted with the current state-of-the-art online map-matching algorithm, especially for the estimation of irregular trajectories that are more twisted than the regular trajectories that prefer the shortest and straightest paths.
2. Literature Review
2.1. Location Fingerprinting-Based Positioning
2.2. Online Trajectory Estimation
2.3. Cellular Signaling Sequence Map-Matching
3. Preliminary
3.1. Data Acquisition and Preprocessing
3.2. Notation
3.3. Problem Formulation
4. Methodology
4.1. Offline Stage
4.1.1. Fingerprint Feature Extraction
4.1.2. Network-Wide Fingerprint Map Construction and Its Properties
4.2. Online Stage
4.2.1. Step 1: Anchor Clustering
Algorithm 1. Anchor point location capture and its timestamp inference. |
Input:
|
Implement DBSCAN algorithm: ; Group the clusters as a set , and the noise points as a set ; Initiate a null set for ; FOR each IN : Take the number of base stations in ; , which is the average longitude of base stations in ; ; likewise, ; Take ; ; FOR each IN : , which is the longitude of the unique base station corresponding to ; |
4.2.2. Step 2: Anchor Map Matching
Algorithm 2. The construction of . |
Input: |
FOR each IN : IF is in : Take the index of in ; Take the index of in ; ; ELSE: . ; . |
4.2.3. Step 3: Trajectory Reconstruction
5. Results and Discussion
5.1. Fingerprint Map Robustness Evaluation
5.1.1. Part1: SBSS Evaluation
5.1.2. Part2: SBSs’ Impacting Weights Evaluation
5.2. Model Performance
5.2.1. Metrics
5.2.2. Parametric Studies
- (1)
- The -value of segment fingerprinting
- (2)
- The -value of anchor clustering
- (3)
- The searching radius of anchor map matching
5.2.3. Overall System Performance
5.3. Algorithm Evaluation
5.4. Further Investigation
5.4.1. External Influences
5.4.2. Computing Latency
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The sensable city: A survey on the deployment and management for smart city monitoring. IEEE Commun. Surv. Tutor. 2018, 21, 1533–1560. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, T.; Zhang, S.; Zhang, J. An intelligent big data collection technology based on micro mobile data centers for crowdsensing vehicular sensor network. Pers. Ubiquitous Comput. 2020, 1–17. [Google Scholar] [CrossRef]
- Ghahramani, M.; Zhou, M.C.; Wang, G. Urban sensing based on mobile phone data: Approaches, applications, and challenges. IEEE-CAA J. Autom. Sin. 2020, 7, 627–637. [Google Scholar] [CrossRef]
- Goh, C.Y.; Dauwels, J.; Mitrovic, N.; Asif, M.T. Online map-matching based on hidden markov model for real-time traffic sensing applications. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage, AK, USA, 16–19 September 2012; pp. 776–781. [Google Scholar]
- Lu, Y.; Ding, H.; Ji, S.; Sze, N.N.; He, Z. Dual attentive graph neural network for metro passenger flow prediction. Neural Comput. Appl. 2021, 33, 13417–13431. [Google Scholar] [CrossRef]
- Lu, Y.; He, Z.; Luo, L. Learning trajectories as words: A probabilistic generative model for destination prediction. In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, New York, NY, USA, 12–14 November 2019; pp. 464–472. [Google Scholar]
- Michael, W.J.; Leo, S.; David, G.S. Combining GPS with TOA/TDOA of Cellular Signals to Locate Terminal. U.S. Patent No. 5,982,324, 9 November 1999. [Google Scholar]
- Ibrahim, M.; Youssef, M. CellSense: An Accurate Energy-Efficient GSM Positioning System. IEEE Trans. Veh. Technol. 2012, 61, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mmWave Positioning for Vehicular Networks. IEEE Wirel. Commun. 2017, 24, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Laoudias, C.; Moreira, A.; Kim, S.; Lee, S.; Wirola, L.; Fischione, C. A Survey of Enabling Technologies for Network Localization, Tracking, and Navigation. IEEE Commun. Surv. Tutor. 2018, 20, 3607–3644. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Zeng, Y. An Overview on Integrated Localization and Communication towards 6G. Sci. China Inf. Sci. 2022, 65, 131301. [Google Scholar] [CrossRef]
- Servick, K. Cellphone tracking could help stem the spread of coronavirus. Is privacy the price? Science 2020. [Google Scholar] [CrossRef]
- Rosenkrantz, L.; Schuurman, N.; Bell, N.; Amram, O. The need for GIScience in mapping COVID-19. Health Place 2020, 67, 102389. [Google Scholar] [CrossRef]
- Sun, H.-C.; Liu, X.-F.; Du, Z.-W.; Xu, X.-K.; Wu, Y. Mitigating COVID-19 Transmission in Schools with Digital Contact Tracing. IEEE Trans. Comput. Soc. Syst. 2021, 8, 1302–1310. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Meng, Q.; Cheng, Q. A tailored machine learning approach for urban transport network flow estimation. Transp. Res. Part C Emerg. Technol. 2019, 108, 130–150. [Google Scholar] [CrossRef]
- Wu, C.; Thai, J.; Yadlowsky, S.; Pozdnoukhov, A.; Bayen, A. Cellpath: Fusion of cellular and traffic sensor data for route flow estimation via convex optimization. Transp. Res. Part C Emerg. Technol. 2015, 59, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Breyer, N.; Gundlegård, D.; Rydergren, C. Travel mode classification of intercity trips using cellular network data. Transp. Res. Procedia. 2021, 52, 211–218. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.-Y.; Tian, B.; Ai, Y.; Chen, L. Parallel distance: A new paradigm of measurement for parallel driving. IEEE/CAA J. Autom. Sin. 2019, 7, 1169–1178. [Google Scholar] [CrossRef]
- Zhang, T.; Song, W.; Fu, M.; Yang, Y.; Wang, M. Vehicle motion prediction at intersections based on the turning intention and prior trajectories model. IEEE/CAA J. Autom. Sin. 2021, 8, 1657–1666. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Y.; Su, R.; Yang, F.; Suganthan, P.; Zhou, M. Solving Traffic Signal Scheduling Problems in Heterogeneous Traffic Network by Using Meta-Heuristics. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3272–3282. [Google Scholar] [CrossRef]
- Hoteit, S.; Secci, S.; Sobolevsky, S.; Pujolle, G.; Ratti, C. Estimating real human trajectories through mobile phone data. In Proceedings of the 2013 IEEE 14th International Conference on Mobile Data Management, Milan, Italy, 3–6 June 2013; pp. 148–153. [Google Scholar]
- Li, M.; Gao, S.; Lu, F.; Zhang, H. Reconstruction of human movement trajectories from large-scale low-frequency mobile phone data. Comput. Environ. Urban Syst. 2019, 77, 101346. [Google Scholar] [CrossRef]
- Schulze, G.; Horn, G.; Kern, R. Map-matching cell phone trajectories of low spatial and temporal accuracy. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Gran Canaria, Spain, 15–18 September 2015. [Google Scholar]
- Bonnetain, L.; Furno, A.; El Faouzi, N.-E.; Fiore, M.; Stanica, R.; Smoreda, Z.; Ziemlicki, C. TRANSIT: Fine-grained human mobility trajectory inference at scale with mobile network signaling data. Transp. Res. Part C Emerg. Technol. 2021, 130, 103257. [Google Scholar] [CrossRef]
- Shen, Z.; Du, W.; Zhao, X.; Zou, J. DMM: Fast map matching for cellular data. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; pp. 1–14. [Google Scholar]
- Mohamed, R.; Aly, H.; Youssef, M. Accurate Real-time Map Matching for Challenging Environments. IEEE Trans. Intell. Transp. Syst. 2017, 18, 847–857. [Google Scholar] [CrossRef]
- Jagadeesh, G.R.; Srikanthan, T. Online map-matching of noisy and sparse location data with hidden Markov and route choice models. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2423–2434. [Google Scholar] [CrossRef]
- Bonnetain, L.; Furno, A.; Krug, J.; El Faouzi, N.-E. Can We Map-Match Individual Cellular Network Signaling Trajectories in Urban Environments? Data-Driven Study. Transp. Res. Rec. J. Transp. Res. Board. 2019, 2673, 74–88. [Google Scholar] [CrossRef]
- Bahl, P.; Padmanabhan, V. RADAR: An In-building RF-based User Location and Tracking System. In Proceedings of the IEEE Infocom, Tel-Aviv, Israel, 26–27 March 2000; pp. 775–784. [Google Scholar]
- Kaemarungsi, K.; Krishnamurthy, P. Modeling of indoor positioning systems based on location fingerprinting. In Proceedings of the IEEE INFOCOM 2004–The Conference on Computer Communications–Twenty Third Annual Joint Conference of the IEEE Computer and Communications Societies, Hong Kong, China, 7–11 March 2004; pp. 1012–1022. [Google Scholar]
- Shin, H.; Cha, H. Wi-Fi Fingerprint-Based Topological Map Building for Indoor User Tracking. In Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA’10, Macau, China, 23–25 August 2010; pp. 105–113. [Google Scholar]
- Li, Q.; Liao, X.; Liu, M.; Valaee, S. Indoor Localization Based on CSI Fingerprint by Siamese Convolution Neural Network. IEEE Trans. Veh. Technol. 2021, 70, 12168–12173. [Google Scholar] [CrossRef]
- Ergen, S.C.; Tetikol, H.S.; Kontik, M.; Sevlian, R.; Rajagopal, R.; Varaiya, P. RSSI-fingerprinting-based mobile phone localization with route constraints. IEEE Trans. Veh. Technol. 2014, 63, 423–428. [Google Scholar] [CrossRef]
- Thiagarajan, A.; Ravindranath, L.S.; Balakrishnan, H.; Madden, S.; Girod, L. Accurate, Low-Energy Trajectory Mapping for Mobile Devices. In Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2011), Boston, MA, USA, 30 March–1 April 2011; pp. 267–280. [Google Scholar]
- Torre, A.D.; Gallo, P.; Gubiani, D.; Marshall, C.; Montanari, A.; Pittino, F. A map-matching algorithm dealing with sparse cellular fingerprint observations. Geo-Spatial Inf. Sci. 2019, 22, 89–106. [Google Scholar] [CrossRef]
- Gundlegård, D.; Karlsson, J.M. Integrated tracking and route classification for travel time estimation based on cellular network signalling data. IET Intell. Transp. Syst. 2020, 14, 1087–1096. [Google Scholar] [CrossRef]
- Wu, H.; Sun, W.; Zheng, B.; Yang, L.; Zhou, W. CLSTERS: A General System for Reducing Errors of Trajectories Under Challenging Localization Situations. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–28. [Google Scholar] [CrossRef]
- Karimi, H.A. Advanced Location-Based Technologies and Services; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, M.Y.; Sohn, T.; Chmelev, D.; Hähnel, D. Practical metropolitan-scale positioning for gsm phones. In Proceedings of the International Conference Ubiquitous Computing, Orange County, CA, USA, 17–21 September 2006; Springer: Berlin, Germany, 2006; pp. 225–242. [Google Scholar]
- Greenfeld, J.S. Matching GPS observations to locations on a digital map. In Proceedings of the Transportation Research Board 81st Annual Meeting, Washington, DC, USA, 13–17 January 2002. [Google Scholar]
- Brakatsoulas, S.; Pfoser, D.; Salas, R.; Wenk, C. On Map-Matching Vehicle Tracking Data. In Proceedings of the 31st Inter-national Conference on Very Large Data Bases (VLDB), Trento, Italy, 4–6 October 2005. [Google Scholar]
- He, Z.-C.; Xi-Wei, S.; Nie, P.-L.; Zhuang, L.-J. On-line map-matching framework for floating car data with low sampling rate in urban road networks. IET Intell. Transp. Syst. 2013, 7, 404–414. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, C.; Zheng, Y.; Xie, X.; Wang, W.; Huang, Y. Map-matching for low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems GIS 09, Seattle, DC, USA, 4–6 November 2009; p. 352. [Google Scholar]
- Dubé, R.; Sommer, H.; Gawel, A.; Bosse, M.; Siegwart, R. Non-uniform sampling strategies for continuous correction based trajectory estimation. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4792–4798. [Google Scholar]
- Kamali, T.; Stashuk, D.W. Discovering Density-Based Clustering Structures Using Neighborhood Distance Entropy Consistency. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1069–1080. [Google Scholar] [CrossRef]
- Ghahramani, M.; O’Hagan, A.; Zhou, M.; Sweeney, J. Intelligent Geodemographic Clustering Based on Neural Network and Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. 2021, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J. Fuzzy clustering based on automated feature pattern-driven similarity matrix reduction. IEEE Trans. Comput. Soc. Syst. 2021, 8, 1203–1212. [Google Scholar] [CrossRef]
- Dang, L.; Chen, B.; Huang, Y.; Zhang, Y.; Zhao, H. Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration. IEEE/CAA J. Autom. Sin. 2021, 9, 450–465. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, G.; Wei, Q. Map matching of mobile probes based on handover location technology. In Proceedings of the IEEE International Conference on Networking, Sensing and Control, Chicago, IL, USA, 10–12 April 2010; pp. 587–592. [Google Scholar]
- Bertini, R.; Lovell, D. Impacts of Sensor Spacing on Accurate Freeway Travel Time Estimation for Traveler Information. J. Intell. Transp. Syst. 2009, 13, 97–110. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Jang, K. Systematic Relation of Estimated Travel Speed and Actual Travel Speed. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2780–2789. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inform. Theory. 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Paul, U.; Subramanian, A.P.; Buddhikot, M.M.; Das, S.R. Understanding traffic dynamics in cellular data networks. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 882–890. [Google Scholar]
- Luomala, J.; Hakala, I. Effects of Temperature and Humidity on Radio Signal Strength in Outdoor Wireless Sensor Networks. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 1247–1255. [Google Scholar]
- The Historical Weather in Shenzhen, China. Available online: http://lishi.tianqi.com/shenzhen/ (accessed on 8 January 2022).
Device ID | Timestamp | Base Station ID | GPS Longitude | GPS Latitude |
---|---|---|---|---|
199**19 | 2020-10-10 09:06:48 | 688**3 | 22.620568 | 114.055819 |
199**19 | 2020-10-10 09:06:49 | 688**3 | 22.620752 | 114.055815 |
199**19 | 2020-10-10 09:06:50 | 181**8 | 22.620910 | 114.055811 |
Cellular signaling sequence | True timestamp of | ||
Basic road segment for fingerprinting | Inferred timestamp of | ||
Base station | The former one of two successive anchor points | ||
Stable impacting base station | The latter one of two successive anchor points | ||
Stable impacting base station set | Inferred timestamp of | ||
SBSS of | True timestamp of | ||
Cumulative moving distance | Inferred timestamp of | ||
Average CMD obtained from several cellular sequences | True timestamp of | ||
Impacting intensity of an SBS | Cellular signaling fragment between | ||
Fingerprint of | Cellular signaling fragment between | ||
Path that consists of a segment series | Base station set of | ||
Integrated SBSS of | Estimated CMD proportion of | ||
Integrated fingerprint of | Base station set of | ||
Anchor point | Estimated CMD proportion of |
Influencing Factors | Recall | Precision | |
---|---|---|---|
Time period | Rush | 92.26% | 88.38% |
Non-Rush | 91.43% | 91.20% | |
Weather condition | Sunny | 92.29% | 90.59% |
Cloudy | 91.19% | 90.15% | |
Rainy | 91.99% | 90.48% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Lu, Y.; He, Z.; Chen, Y. Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map. Sensors 2022, 22, 1605. https://doi.org/10.3390/s22041605
Chen L, Lu Y, He Z, Chen Y. Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map. Sensors. 2022; 22(4):1605. https://doi.org/10.3390/s22041605
Chicago/Turabian StyleChen, Langqiao, Yuhuan Lu, Zhaocheng He, and Yixian Chen. 2022. "Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map" Sensors 22, no. 4: 1605. https://doi.org/10.3390/s22041605
APA StyleChen, L., Lu, Y., He, Z., & Chen, Y. (2022). Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map. Sensors, 22(4), 1605. https://doi.org/10.3390/s22041605