Towards the World’s Smallest Gravimetric Particulate Matter Sensor: A Miniaturized Virtual Impactor with a Folded Design
Abstract
:1. Introduction
- PM10: inhalable particles, with aerodynamic diameters of 10 μm and smaller;
- PM2.5: fine inhalable particles, with aerodynamic diameters that are generally 2.5 μm and smaller.
PM2.5: | 10 µg/m3 annual mean |
25 µg/m3 24-h mean | |
PM10: | 20 µg/m3 annual mean |
50 µg/m3 24-h mean |
2. System Overview
- A mass sensing unit;
- A virtual impactor;
- A thermophoretic reset mechanism.
3. Miniaturized Virtual Impactor
3.1. Working Principle and Design Parameters
3.2. Design and Simulations
3.3. Fabrication
4. Experimental Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the world’s population are exposed to increasing air pollution. NPJ Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment. Available online: https://apps.who.int/iris/handle/10665/69477 (accessed on 30 December 2021).
- WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 30 December 2021).
- Thermo Fisher Scientific. 1405 TEOM™ Continuous Ambient Particulate Monitor. Available online: https://www.thermofisher.com/order/catalog/product/TEOM1405?SID=srch-srp-TEOM1405 (accessed on 16 February 2022).
- EPA. Particulate Matter (PM) Pollution. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 30 December 2021).
- Ville de Montréal, Service de l’Environnement. Environmental Assessment Report 2019 Air Quality in Montréal Service de l’Environnement; Ville de Montréal, Service de l’Environnement: Montreal, QC, Canada, 2019; ISSN 1925-6868. [Google Scholar]
- Environment and Climate Change Canada. Canadian Air and Precipitation Monitoring Network (CAPMoN); Record ID: 4baa2ee4-a8aa-457a-af26-aa13e96ee2f4; Environment and Climate Change Canada: Ottawa, ON, Canada, 2018. [Google Scholar]
- Tan, B.K. Laboratory Evaluation of Low to Medium Cost Particle Sensors. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar]
- Bao, Y.; Cai, S.; Yu, H.; Xu, T.; Xu, P.; Li, X. A resonant cantilever-based particle sensor with particle-size selection function. J. Micromech. Microeng. 2018, 28, 085019. [Google Scholar] [CrossRef]
- Liu, J.; Hao, W.; Liu, M.; Liang, Y.; He, S. A novel particulate matter 2.5 sensor based on surface acoustic wave technology. Appl. Sci. 2018, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Park, K.K.; Oralkan, O.; Kupnik, M.; Khuri-Yakub, B.T. CMUT as a chemical sensor for DMMP detection. In Proceedings of the 2008 IEEE International Frequency Control Symposium, Honolulu, HI, USA, 19–21 May 2008; Volume 160, pp. 434–439. [Google Scholar]
- Singh, N.; Elsayed, M.Y.; El-Gamal, M.N. Methods and Devices for MEMS-Based Particulate Matter Sensors. U.S. Patent 20210123849A1, 28 October 2019. [Google Scholar]
- Singh, N.; Elsayed, M.Y.; El-Gamal, M.N. Realizing a Highly Compact Particulate Matter Sensor with a MEMS-Based Resonant Membrane. In Proceedings of the 2019 IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Health Based Particle Size Selective Sampling. Available online: https://www.tsi.com/getmedia/c388c1e7-9ab4-4f88-9f76-f2a3b64ba293/ITI-050?ext=.pdf (accessed on 30 December 2021).
- Marple, V.A.; Chein, C.M. Virtual Impactors: A Theoretical Study. Environ. Sci. Technol. 1980, 14, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Shih, W.-P.; Chen, C.-S.; Dai, C.-A.A. Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations. Sensors 2010, 10, 3641–3654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flagan, R.C. Compressible Flow Inertial Impactor. J. Colloid Interface Sci. 1982, 87, 291–297. [Google Scholar] [CrossRef]
- Willeke, K, Temperature Dependence of Particle Slip in a Gaseous Medium. J. Aerosol Sci. 1976, 7, 381–387. [CrossRef]
- Mallina, R.V.; Wexler, A.S.; Rhoads, K.P.; Johnston, M.V. High-Speed Particle Beam Generation: A Dynamic Focusing Mechanism for Selecting Ultrafine Particles. Aerosol Sci. Technol. 2000, 33, 87–104. [Google Scholar] [CrossRef]
- Tanabe, R.; Hata, S.; Shimokohbe, A. MEMS complete blood count sensors designed to reduce noise from electrolysis gas. Microelectron. Eng. 2006, 83, 1646–1650. [Google Scholar] [CrossRef]
- Lim, H.H.; Park, D.; Maeng, J.Y.; Hwang, J.; Kim, Y.J. A circumferential slot virtual impactor. Aerosol Sci. Technol. 2004, 38, 664–674. [Google Scholar]
- Lim, H.H.; Park, D.; Maeng, J.Y.; Hwang, J. MEMS based integrated particle detection chip for real time environmental monitoring. In Proceedings of the 18th IEEE International Conference on Micro Electro-Mechanical Systems (MEMS), Istanbul, Turkey, 22–26 January 2006; pp. 62–65. [Google Scholar]
- Formlabs. Materials Data Sheet, Photopolymer Resin for Form 1+ and Form 2, Technical Datasheet; Formlabs: Somerville, MA, USA, 2018. [Google Scholar]
- Majumdar, D.; William, S.P. Chalk dustfall during classroom teaching: Particle size distribution and morphological characteristics. Environ. Monit. Assess. 2009, 148, 343–351. [Google Scholar] [CrossRef] [PubMed]
Design Parameter | Dimension |
---|---|
W (inlet width) | 400 µm |
W1 (minor flow channel width) | 720 µm |
T (inlet length) | 1200 µm |
S (major flow channel width) | 840 µm |
Depth of the channels | 600 µm |
Flow rate * (at the outlet) | 0.1 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, N.; Elsayed, M.Y.; El-Gamal, M.N. Towards the World’s Smallest Gravimetric Particulate Matter Sensor: A Miniaturized Virtual Impactor with a Folded Design. Sensors 2022, 22, 1727. https://doi.org/10.3390/s22051727
Singh N, Elsayed MY, El-Gamal MN. Towards the World’s Smallest Gravimetric Particulate Matter Sensor: A Miniaturized Virtual Impactor with a Folded Design. Sensors. 2022; 22(5):1727. https://doi.org/10.3390/s22051727
Chicago/Turabian StyleSingh, Navpreet, Mohannad Y. Elsayed, and Mourad N. El-Gamal. 2022. "Towards the World’s Smallest Gravimetric Particulate Matter Sensor: A Miniaturized Virtual Impactor with a Folded Design" Sensors 22, no. 5: 1727. https://doi.org/10.3390/s22051727
APA StyleSingh, N., Elsayed, M. Y., & El-Gamal, M. N. (2022). Towards the World’s Smallest Gravimetric Particulate Matter Sensor: A Miniaturized Virtual Impactor with a Folded Design. Sensors, 22(5), 1727. https://doi.org/10.3390/s22051727