Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging
Abstract
:1. Introduction
2. Background
2.1. MRI Images—Segmentation and Classification
2.2. AI techniques
2.2.1. Deep Learning
2.2.2. Neural Network
2.2.3. Machine Learning and Image Processing
2.3. Deep Learning Applications
2.3.1. Anomaly Detection
2.3.2. Object Detection
2.3.3. Pattern Recognition
2.3.4. Natural Language Processing
3. Literature Review
3.1. Tumor Detection—Classic Approach
3.2. Deep Learning and AI for Medical Imaging
3.3. CNN for Medical Imaging
3.4. Modeling in CNN
3.4.1. Ensembles of Multiple Models and Architectures (EMMA)
3.4.2. CNN-Based Segmentation of Medical Imaging Data
3.4.3. Auto Encoder Regularization Based
3.5. Hybrid Techniques in Classification
4. Learning Methods and Related Concepts
4.1. Method of Learning
4.1.1. Supervised Learning
4.1.2. Unsupervised Learning
4.1.3. Semi-Supervised Learning
4.2. Review of CAD System
Example of Studied Based on CAD System
4.3. Segmentation and Classification
4.4. Semantic Segmentation
5. Convolutional Neural Networks
5.1. Importance of CNN
5.2. U-Net and Fully Convolutional Network
5.3. Comparison of Different CNN Architectures
5.4. Usages of CNN Methods in Medicine
Usages of CNN in E-Health
6. Neural Networks and Beyond
6.1. Representation Learning
6.2. Pre-Trained Unsupervised Networks
6.2.1. Autoencoders
6.2.2. Generative Adversarial Networks
6.2.3. Deep Belief Networks
6.3. Recurrent Neural Networks
7. Discussion
7.1. Challenges and Solutions
7.1.1. First Time Consuming
7.1.2. Accuracy of Diagnosis
7.1.3. Need Second Opinion
7.1.4. Complexity of Computational
7.1.5. User Rights
7.2. Future Directions
7.2.1. Data Perspective
7.2.2. Modeling Perspective
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Li, M.; Wang, J.; Wu, F.; Liu, T.; Pan, Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 2014, 19, 578–595. [Google Scholar]
- Bauer, S.; Wiest, R.; Nolte, L.P.; Reyes, M. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 2013, 58, R97–R129. [Google Scholar] [CrossRef] [Green Version]
- Chahal, P.K.; Pandey, S.; Goel, S. A survey on brain tumor detection techniques for MR images. Multimed. Tools Appl. 2020, 79, 21771–21814. [Google Scholar] [CrossRef]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolz, J.; Desrosiers, C.; Ben Ayed, I. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. NeuroImage 2018, 170, 456–470. [Google Scholar] [CrossRef] [Green Version]
- Kleesiek, J.; Urban, G.; Hubert, A.; Schwarz, D.; Maier-Hein, K.; Bendszus, M.; Biller, A. Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. NeuroImage 2016, 129, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Kabir Anaraki, A.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74. [Google Scholar] [CrossRef]
- Ahmed, B.; Al-Ani, M. An efficient approach to diagnose brain tumors through deep CNN. Math. Biosci. Eng. 2021, 18, 851–867. [Google Scholar] [CrossRef]
- McBee, M.P.; Awan, O.A.; Colucci, A.T.; Ghobadi, C.W.; Kadom, N.; Kansagra, A.P.; Tridandapani, S.; Auffermann, W.F. Deep Learning in Radiology. Acad. Radiol. 2018, 25, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, N.; Condino, S.; Cattari, N.; D’Amato, R.; Ferrari, V.; Cutolo, F. Augmented Reality-Assisted Craniotomy for Parasagittal and Convexity En Plaque Meningiomas and Custom-Made Cranio-Plasty: A Preliminary Laboratory Report. Int. J. Environ. Res. Public Health 2021, 18, 9955. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Fernandes, S.L.; WeiKoh, J.E.; Ciaccio, E.J.; Fabell, M.K.M.; Tanik, U.J.; Rajinikanth, V.; Yeong, C.H. Automated Detection of Alzheimer’s Disease Using Brain MRI Images—A Study with Various Feature Extraction Techniques. J. Med. Syst. 2019, 43, 302. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, N.; Rocca, M.L.; Monaco, A.; Bellotti, R.; Tangaro, S. Complex networks reveal early MRI markers of Parkinson’s disease. Med. Image Anal. 2018, 48, 12–24. [Google Scholar] [CrossRef]
- Bruun, M.; Koikkalainen, J.; Rhodius-Meester, E.A. Detecting frontotemporal dementia syndromes using MRI biomarkers. Neuroimage Clin. 2019, 22, 101711. [Google Scholar] [CrossRef]
- Fitsiori, A.; Pugin, D.; Thieffry, C.; Lalive d’Epinay, P.; Vargas Gomez, M.I. Unusual Microbleeds in Brain MRI of Covid-19 Patients. J. Neuroimaging 2020, 30, 593–597. [Google Scholar] [CrossRef]
- Espinosa, P.S.; Rizvi, Z.; Sharma, P.; Hindi, F.; Filatov, A. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy, MRI Brain and Cerebrospinal Fluid Findings: Case 2. Cureus 2020, 12, e7930. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Y. Brain Tumor Segmentation Using a Fully Convolutional Neural Network with Conditional Random Fields. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, E. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. CoRR 2018, abs/1811.02629. [Google Scholar] [CrossRef]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.; Wang, T.; Parker, J.; Csernansky, J.; Morris, J.; Buckner, R. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. J. Cogn. Neurosci. 2007, 19, 1498–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, J.; Zhang, Y. Early Diagnosis of Alzheimer’s Disease: A Neuroimaging Study With Deep Learning Architectures. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Diamant, A.; Chatterjee, A.; Vallières, M.; Shenouda, G.; Seuntjens, J. Deep learning in head & neck cancer outcome prediction. Sci. Rep. 2019, 9, 2764. [Google Scholar]
- Sekaran, K.; Chandana, P.; Krishna, N.M.; Kadry, S. Deep learning convolutional neural network (CNN) With Gaussian mixture model for predicting pancreatic cancer. Multimed. Tools Appl. 2020, 79, 10233–10247. [Google Scholar] [CrossRef]
- AlBadawy, E.A.; Saha, A.; Mazurowski, M.A. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med. Phys. 2018, 45, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Pinto, A.; Oliveira, J.; Mendrik, A.M.; Correia, J.H.; Silva, C.A. Automatic brain tissue segmentation in MR images using Random Forests and Conditional Random Fields. J. Neurosci. Methods 2016, 270, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Tsogkas, S.; Ferrante, E.; Lippe, S.; Kadoury, S.; Paragios, N.; Kokkinos, I. Sub-cortical brain structure segmentation using F-CNN’S. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 269–272. [Google Scholar]
- Jurek, J.; Kociński, M.; Materka, A.; Elgalal, M.; Majos, A. CNN-based superresolution reconstruction of 3D MR images using thick-slice scans. Biocybern. Biomed. Eng. 2020, 40, 111–125. [Google Scholar] [CrossRef]
- Tripathi, P.C.; Bag, S. CNN-DMRI: A Convolutional Neural Network for Denoising of Magnetic Resonance Images. Pattern Recognit. Lett. 2020, 135, 57–63. [Google Scholar] [CrossRef]
- Grimm, F.; Edl, F.; Kerscher, S.R.; Nieselt, K.; Gugel, I.; Schuhmann, M.U. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus—Transfer learning from existing algorithms. Acta Neurochir. 2020, 162, 2463–2474. [Google Scholar] [CrossRef]
- Kalpathy-Cramer, J.; Freymann, J.B.; Kirby, J.S.; Kinahan, P.E.; Prior, F.W. Quantitative Imaging Network: Data Sharing and Competitive AlgorithmValidation Leveraging The Cancer Imaging Archive. Transl. Oncol. 2014, 1, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Basheera, S.; Ram, M.S.S. Classification of Brain Tumors Using Deep Features Extracted Using CNN. J. Phys. Conf. Ser. 2019, 1172, 012016. [Google Scholar] [CrossRef]
- Pollak Dorocic, I.; Fürth, D.; Xuan, Y.; Johansson, Y.; Pozzi, L.; Silberberg, G.; Carlén, M.; Meletis, K. A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron 2014, 83, 663–678. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, R.; Qin, C.; Oktay, O.; Bowles, C.; Chen, L.; Joules, R.; Wolz, R.; Valdés-Hernández, M.D.; Dickie, D.A.; Wardlaw, J.; et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Neuroimage Clin. 2018, 43, 929–939. [Google Scholar] [CrossRef] [Green Version]
- Joudaki, H.; Rashidian, A.; Minaei-Bidgoli, B.; Mahmoodi, M.; Geraili, B.; Nasiri, M.; Arab, M. UsingnData Mining to Detect Health Care Fraud and Abuse: A Review of Literature. Glob. J. Health Sci. 2015, 7, 194–202. [Google Scholar]
- Roy, R.; George, K.T. Detecting insurance claims fraud using machine learning techniques. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar]
- Khagi, B.; Lee, C.G.; Kwon, G.R. Alzheimer’s disease Classification from Brain MRI based on transfer learning from CNN. In Proceedings of the 2018 11th Biomedical Engineering International Conference (BMEiCON), Chaing Mai, Thailand, 21–24 November 2018; pp. 1–4. [Google Scholar]
- Khedher, L.; Illan, I.A. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support. Int. J. Neural Syst. 2016, 27, 1650050. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, S.; Tofighi, G. Classification of Alzheimer’s Disease using fMRI Data and Deep Learning Convolutional Neural Networks. Sci. Rep. 2019, 9, 18150. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Lavecchia, A. Deep learning in drug discovery: Opportunities, challenges and future prospects. Drug Discov Today 2019, 24, 2017–2032. [Google Scholar] [CrossRef]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef]
- Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol. 2019, 15, e1007084. [Google Scholar] [CrossRef]
- Rusk, N. Deep learning. Nat. Methods 2016, 13, 35. [Google Scholar] [CrossRef]
- Kamboj, A.; Rani, R.; Chaudhary, J. Deep Leaming Approaches for Brain Tumor Segmentation: A Review. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; pp. 599–603. [Google Scholar]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Chalapathy, R.; Chawla, S. Deep Learning for Anomaly Detection: A Survey. arXiv 2019, arXiv:1901.03407. [Google Scholar]
- Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W.; Kann, K.; Yu, M.; Schutze, H. Comparative Study of CNN and RNN for Natural Language Processing. arXiv 2017, arXiv:1702.01923. [Google Scholar]
- Chen, P.H.; Zafar, H.; Galperin-Aizenberg, M.; Cook, T. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports. J. Digit. Imaging 2018, 31, 178–184. [Google Scholar] [CrossRef]
- Yala, A.; Barzilay, R.; Salama, L.; Griffin, M.; Sollender, G.; Bardia, A.; Lehman, C.; Buckley, J.M.; Coopey, S.B.; Polubriaginof, F.; et al. Using machine learning to parse breast pathology reports. Breast Cancer Res. Treat. 2017, 161, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, H.E.M.; Esmail, M. Brain tumor detection by using artificial neural network. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 12–14 August 2018; pp. 1–6. [Google Scholar]
- Sharma, K.; Kaur, A.; Gujral, S. Brain Tumor Detection based on Machine Learning Algorithms. Int. J. Comput. Appl. 2014, 103, 7–11. [Google Scholar] [CrossRef]
- Vinoth, R.; Venkatesh, C. Segmentation and Detection of Tumor in MRI images Using CNN and SVM Classification. In Proceedings of the Conference on Emerging Devices and Smart Systems (ICEDSS), Tiruchengode, India, 2–3 March 2018. [Google Scholar]
- Azhari, E.E.M.; Hatta, M.M.M.; Htike, Z.Z.; Win, S.L. Tumor Detection In Medical Imaging A Survey. Int. J. Adv. Inf. Technol. 2014, 4, 9. [Google Scholar]
- Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. In Medical Image Understanding and Analysis; Valdés Hernández, M., González-Castro, V., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 506–517. [Google Scholar]
- Saba, T.; Sameh Mohamed, A.; El-Affendi, M.; Amin, J.; Sharif, M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 2020, 59, 221–230. [Google Scholar] [CrossRef]
- Khan, M.A.; Lali, I.U.; Rehman, A.; Ishaq, M.; Sharif, M.; Saba, T.; Zahoor, S.; Akram, T. Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microsc. Res. Tech. 2019, 86, 909–922. [Google Scholar] [CrossRef]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Jiang, Y.; Edwards, A.V.; Newstead, G.M. Artificial Intelligence Applied to Breast MRI for Improved Diagnosis. Radiology 2020, 298, 38–46. [Google Scholar] [CrossRef]
- Roblot, V.; Giret, Y.; Bou Antoun, M.; Morillot, C.; Chassin, X.; Cotten, A.; Zerbib, J.; Fournier, L. Artificial intelligence to diagnose meniscus tears on MRI. Diagn. Interv. Imaging 2019, 100, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; Antunovic, L.; Chiti, A.; Kirienko, M. Towards clinical application of image mining: A systematic review on artificial intelligence and radiomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2656–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Pan, Y.; Li, M.; Chen, Z.; Tang, L.; Lu, C.; Wang, J. Applications of deep learning to MRI images: A survey. Big Data Min. Anal. 2018, 1, 1–18. [Google Scholar]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, X.; Cui, P. Deep Learning for Learning Graph Representations. In Deep Learning: Concepts and Architectures; Pedrycz, W., Chen, S.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 169–210. [Google Scholar]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans. Med. Imaging 2016, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Zikic, D.; Ioannou, Y.; Brown, M.; Criminisi, A. Segmentation of Brain Tumor Tissues with Convolutional Neural Networks. In Proceedings of the MICCAI Workshop on Multimodal Brain Tumor Segmentation Challenge (BRATS), Boston, MA, USA, 14 September 2014. [Google Scholar]
- Bernal, J.; Kushibar, K.; Asfaw, D.S.; Valverde, S.; Oliver, A.; Marti, R.; Llado, X. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. arXiv 2017, arXiv:1712.03747. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Ding, C.; Liu, M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recognit. 2019, 88, 90–100. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 12 June 2015. [Google Scholar]
- Fritscher, K.; Raudaschl, P.; Zaffino, P.; Spadea, M.F.; Sharp, G.C.; Schubert, R. Deep Neural Networks for Fast Segmentation of 3D Medical Images. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, München, Germany, 17–21 October 2016; pp. 158–165. [Google Scholar]
- Zhao, L.; Jia, K. Deep Feature Learning with Discrimination Mechanism for Brain Tumor Segmentation and Diagnosis. In Proceedings of the 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, Australia, 23–25 September 2015; pp. 306–309. [Google Scholar]
- Moritz, S.A.; Pfab, J.; Wu, T.; Hou, J.; Cheng, J.; Cao, R.; Wang, L.; Si, D. Cascaded-CNN: Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps. Sci. Rep. 2019, 10, 572990. [Google Scholar]
- Moujahid, H.; Cherradi, B.; Bahatti, L. Convolutional Neural Networks for Multimodal Brain MRI Images Segmentation: A Comparative Study. In Smart Applications and Data Analysis; Hamlich, M., Bellatreche, L., Mondal, A., Ordonez, C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 329–338. [Google Scholar]
- Kayalibay, B.; Jensen, G.; van der Smagt, P. CNN-based Segmentation of Medical Imaging Data. arXiv 2017, arXiv:1701.03056. [Google Scholar]
- Myronenko, A. 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 311–320. [Google Scholar]
- Kharrat, A.; Gasmi, K.; Messaoud, M.B.; Benamrane, N.; Abid, M. A Hybrid Approach for Automatic Classification of Brain MRI Using Genetic Algorithm and Support Vector Machine. Leonardo J. Sci. 2010, 17, 71–82. [Google Scholar]
- Kumar, S.; Dabas, C.; Godara, S. Classification of Brain MRI Tumor Images: A Hybrid Approach. Procedia Comput. Sci. 2017, 122, 510–517. [Google Scholar] [CrossRef]
- Agrawal, R.; Sharma, M.; Singh, B.K. Segmentation of Brain Lesions in MRI and CT Scan Images: A Hybrid Approach Using k-Means Clustering and Image Morphology. J. Inst. Eng. Ser. 2018, 99, 173–180. [Google Scholar] [CrossRef]
- Parveen; Singh, A. Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015; pp. 98–102. [Google Scholar]
- Abdel-Maksoud, E.; Elmogy, M.; Al-Awadi, R. Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inform. J. 2015, 16, 71–81. [Google Scholar] [CrossRef]
- Saha, C.; Hossain, M.F. MRI brain tumor images classification using K-means clustering, NSCT and SVM. In Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, India, 26–28 October 2017; pp. 329–333. [Google Scholar]
- Islam, A.; Hossain, M.F.; Saha, C. A new hybrid approach for brain tumor classification using BWT-KSVM. In Proceedings of the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; pp. 241–246. [Google Scholar]
- Virupakshappa, D.B.A. Computer Based Diagnosis System for Tumor Detection & Classification: A Hybrid Approach. Int. J. Pure Appl. Math. 2018, 118, 33–43. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Into Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaderi, A.; Athitsos, V. Selective unsupervised feature learning with Convolutional Neural Network (S-CNN). In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2486–2490. [Google Scholar]
- Liu, B.; Yu, X.; Zhang, P.; Tan, X.; Yu, A.; Xue, Z. A semi-supervised convolutional neural network for hyperspectral image classification. Remote Sens. Lett. 2017, 8, 839–848. [Google Scholar] [CrossRef]
- Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2007, 31, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassin, N.I.R.; Omran, S.; El Houby, E.M.F.; Allam, H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Comput. Methods Programs Biomed. 2018, 156, 25–45. [Google Scholar] [CrossRef]
- Lee, H.; Chen, Y.P.P. Image based computer aided diagnosis system for cancer detection. Expert Syst. Appl. 2015, 42, 5356–5365. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Z.; Ding, Y.; Tian, L.; Qin, Z. Brain tumor segmentation with deep convolutional symmetric neural network. Neuro Comput. 2019, 392, 305–313. [Google Scholar] [CrossRef]
- Jian, J.; Xiong, F.; Xia, W.; Zhang, R.; Gu, J.; Wu, X.; Meng, X.; Gao, X. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas. Phys. Eng. Sci. Med. 2018, 41, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Cheng, H.; Yang, L. Size-Invariant Fully Convolutional Neural Network for vessel segmentation of digital retinal images. In Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, Korea, 13–16 December 2016; pp. 1–7. [Google Scholar]
- Fu, H.; Xu, Y.; Wong, D.W.K.; Liu, J. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 698–701. [Google Scholar]
- Huang, L.; Xia, W.; Zhang, B.; Qiu, B.; Gao, X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput. Methods Programs Biomed. 2017, 143, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Monett, MO, USA, 2012; pp. 1097–1105. [Google Scholar]
- Shen, H.; Zhang, J.; Zheng, W. Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3864–3868. [Google Scholar]
- Daimary, D.; Bora, M.B.; Amitab, K.; Kandar, D. Brain Tumor Segmentation from MRI Images using Hybrid Convolutional Neural Networks. Procedia Comput. Sci. 2020, 167, 2419–2428. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems 2; Touretzky, D.S., Ed.; Morgan-Kaufmann: Burlington, MA, USA, 1990; pp. 396–404. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. CVPR 2016, 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper With Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2015. [Google Scholar]
- El-Sawy, A.; EL-Bakry, H.; Loey, M. CNN for Handwritten Arabic Digits Recognition Based on LeNet-5. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 9–11 September 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 566–575. [Google Scholar]
- Grm, K.; Struc, V.; Artiges, A.; Caron, M.; Ekenel, H.K. Strengths and Weaknesses of Deep Learning Models for Face Recognition against Image Degradations. arXiv 2017, arXiv:1710.01494v1. [Google Scholar] [CrossRef] [Green Version]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Guthier, B. Convolutional Neural Networks.
- Sawant, A.; Bhandari, M.; Yadav, R.; Yele, R.; Bendale, M.S. Brain Cancer Detection From MRI: A Machine Learning Approach tensorflow. Int. Res. J. Eng. Technol. 2018, 5, 4. [Google Scholar]
- Ucar, M.; Ucar, E. Computer-Aided Detection of Lung Nodules in Chest X-rays using Deep Convolutional Neural Networks. Sak. Univ. J. Comput. Inf. Sci 2019, 1–8. [Google Scholar] [CrossRef]
- Sun, J.; Sun, T.; Yuan, Y.; Zhang, X.; Shi, Y.; Lin, Y. Automatic Diagnosis of Thyroid Ultrasound Image Based on FCN-AlexNet and Transfer Learning. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [Google Scholar]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 2019, 14, e0217293. [Google Scholar] [CrossRef] [Green Version]
- Shahzadi, I.; Tang, T.B.; Meriadeau, F.; Quyyum, A. CNN-LSTM: Cascaded Framework For Brain Tumour Classification. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; pp. 633–637. [Google Scholar]
- Song, Y.; Zhang, Y.D.; Yan, X.; Liu, H.; Zhou, M.; Hu, B.; Yang, G. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J. Magn. Reson. Imaging 2018, 48, 1570–1577. [Google Scholar] [CrossRef]
- Chi, J.; Walia, E.; Babyn, P.; Wang, J.; Groot, G.; Eramian, M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J. Digit. Imaging 2017, 30, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, P.; Nandanwar, L.; Kanchan, S.; Bhadra, A.; Chakraborty, J.; Nandi, D. Brain Tumor Classification Using ResNet-101 Based Squeeze and Excitation Deep Neural Network. In Proceedings of the 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Sikkim, India, 25–28 February 2019; pp. 1–6. [Google Scholar]
- Chen, X.; Chen, Y.; Ma, C.; Liu, X.; Tang, X. Classification of Pancreatic Tumors Based on MRI Images Using 3D Convolutional Neural Networks. In Proceedings of the 2Nd International Symposium on Image Computing and Digital Medicine, Chengdu, China, 13–14 October 2018. [Google Scholar]
- Vestias, M.P. A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms 2019, 12, 154. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 2018, 43, 98–111. [Google Scholar] [CrossRef]
- Setio, A.A.A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; van Riel, S.J.; Wille, M.M.W.; Naqibullah, M.; Sánchez, C.I.; van Ginneken, B. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Trans. Med. Imaging 2016, 35, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Kekelidze, M.; D’Errico, L.; Pansini, M.; Tyndall, A.; Hohmann, J. Colorectal cancer: Current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J. Gastroenterol. 2013, 19, 8502–8514. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using Convolutional Neural Networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 25 July 2016; pp. 2560–2567. [Google Scholar]
- Tang, S.; Aoyagi, S.; Ho, Y.; Sato-Shimokawara, E.; Yamaguchi, T. Wearable Sensor Data Visualization based on CNN towards Healthcare Promotion. In Proceedings of the 2020 International Symposium on Community-centric Systems (CcS), Tokyo, Japan, 23–26 September 2020; pp. 1–5. [Google Scholar]
- Zhao, K.; Jiang, H.; Yuan, T.; Zhang, C.; Jia, W.; Wang, Z. A CNN Based Human Bowel Sound Segment Recognition Algorithm with Reduced Computation Complexity for Wearable Healthcare System. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar]
- Ke, H.; Chen, D.; Shah, T.; Liu, X.; Zhang, X.; Zhang, L.; Li, X. Cloud-aided online EEG classification system for brain healthcare: A case study of depression evaluation with a lightweight CNN. Softw. Pract. Exp. 2020, 50, 596–610. [Google Scholar] [CrossRef]
- Farahani, B.; Barzegari, M.; Shams Aliee, F.; Shaik, K.A. Towards collaborative intelligent IoT eHealth: From device to fog, and cloud. Microprocess. Microsyst. 2020, 72, 102938. [Google Scholar] [CrossRef]
- Hou, J.; Su, H.; Yan, B.; Zheng, H.; Sun, Z.; Cai, X. Classification of tongue color based on CNN. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10–12 March 2017; pp. 725–729. [Google Scholar]
- Liu, C.; Cao, Y.; Alcantara, M.; Liu, B.; Brunette, M.; Peinado, J.; Curioso, W. TX-CNN: Detecting tuberculosis in chest X-ray images using convolutional neural network. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2314–2318. [Google Scholar]
- Kushibar, K.; Valverde, S.; González-Villà, S.; Bernal, J.; Cabezas, M.; Oliver, A.; Lladó, X. Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction. Sci. Rep. 2019, 9, 6742. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.; Harmuth, K.; Gierke, W.; Kellermeier, T.; Fischer, M.; Yang, H.; Meinel, C. A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 241–252. [Google Scholar]
- Deepak, S.; Ameer, P.M. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019, 111, 103345. [Google Scholar] [CrossRef]
- Hosseini, M.P.; Lu, S.; Kamaraj, K.; Slowikowski, A.; Venkatesh, H.C. Deep Learning Architectures. In Deep Learning: Concepts and Architectures; Pedrycz, W., Chen, S.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–24. [Google Scholar]
- Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach; O’Reilly Media, Inc.: Newton, MA, USA, 2017. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Zhan, Y.; Hu, D.; Wang, Y.; Yu, X. Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 212–216. [Google Scholar] [CrossRef]
- Ghassemi, N.; Shoeibi, A.; Rouhani, M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed. Signal Process. Control 2020, 57, 101678. [Google Scholar] [CrossRef]
- Kharrat, A.; Néji, M. Classification of brain tumors using personalized deep belief networks on MRImages: PDBN-MRI. In Proceedings of the Eleventh International Conference on Machine Vision (ICMV 2018), International Society for Optics and Photonics, Munich, Germany, 1–3 November 2018; p. 110412M. [Google Scholar]
- Zhan, T.; Chen, Y.; Hong, X.; Lu, Z.; Chen, Y. Brain Tumor Segmentation Using Deep Belief Networks and Pathological Knowledge. CNS Neurol. Disord. Drug Targets 2017, 16, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Soraghan, J.; Lowit, A.; Di Caterina, G. A deep learning method for pathological voice detection using convolutional deep belief networks. Interspeech 2018, 2018, 446–450. [Google Scholar] [CrossRef] [Green Version]
- Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G. Deep Learning for Health Informatics. IEEE J. Biomed. Health Inform. 2017, 21, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ghesu, F.C.; Georgescu, B.; Mansoor, A.; Yoo, Y.; Neumann, D.; Patel, P.; Vishwanath, R.S.; Balter, J.M.; Cao, Y.; Grbic, S.; et al. Self-supervised Learning from 100 Million Medical Images. arXiv 2022, arXiv:2201.01283. [Google Scholar]
- Zhou, Y.; Li, Z.; Zhu, H.; Chen, C.; Gao, M.; Xu, K.; Xu, J. Holistic Brain Tumor Screening and Classification Based on DenseNet and Recurrent Neural Network. In Brainlesion: Ma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 208–217. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Rahman, T.; Chowdhury, M.E.H.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kadir, M.A.; Kashem, S. Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest X-ray. Appl. Sci. 2020, 10, 3233. [Google Scholar] [CrossRef]
- Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning BiLSTM network: A novel approach for COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [Google Scholar] [CrossRef] [PubMed]
Ref. | Year | Focus of the Survey | Description | Distinguishing Features to Our Study |
---|---|---|---|---|
[1] | 2014 | Brain tumor segmentation | General overview for MRI-based brain tumor segmentation methods. | Only focus on MRI-based brain tumor segmentation |
[4] | 2017 | Brain tumor segmentation | A deep convolutional neural network for an automatic brain tumor segmentation. | Presented a fully automatic brain tumor segmentation method based on DCNN by considering different architectures and their impacts. |
[5] | 2018 | Subcortical brain structure segmentation | A 3D-CNN for segmentation of the subcortical brain in MRI images. | Presented a method based on fully-convolutional networks, they show their performance on the ISBR dataset. |
[6] | 2016 | Brain extraction of MR images | For extraction brain MRI images using 3D convolutional deep learning. | It is about the 3D convolutional deep learning architecture which handles an optional number of modalities for large-scale studies. |
[7] | 2017 | Brain lesion segmentation | Brain lesion segmentation based on 3D-CNN architecture, DeepMedic. | For brain lesion segmentation presented a dual pathway 3D-CNN. |
[8] | 2019 | Classifying glioma brain tumor | A combined method from CNN and genetic algorithm for classifying glioma brain tumor from MRI images. | They focused on a combination of genetic algorithm and CNN |
[3] | 2020 | Brain tumor detection for MR images | Review of numbers of segmentation and classification techniques which are used in detection of brain diseases. | Mostly they discussed different types of MRI images and focused on the medical sides of brain tumor classification. |
[9] | 2021 | Brain tumor diagnosis | Diagnosis the hardest tumor situation in radiology with Deep CNN | Using MATLAB software for processing and their database collected on 1258 MRI images from 2015 to 2020 |
Dataset | Description | Ref. | Features |
---|---|---|---|
BRATS | Brain Tumor Segmentation Challenge (BRATS) always focus on the evaluation of current and novel methods for brain tumors segmentation in multimodal MR images and has the dataset available from 2012 to 2020. | [17,18,19] | Fully Convolutional Neural Network (FCNN) and Conditional Random Fields (CRF) used in Brain tumor segmentation and this is based in conjunction with the MICCAI 2012 and 2013 conferences. |
OASIS | Open Access Series of Imaging Studies is contained over 2000 MR sessions are collected among several ongoing projects through the WUSTL Knight ADRC | [20,21] | Diagnosis of Alzheimer’s Disease. |
TCIA | The Cancer Imaging Archive (TCIA) is a big archive of cancer images and available for public download. | [22,23,24] | Prediction of head and neck cancer and Prediction of pancreatic cancer. Segmentation of brain tumors. |
IBSR | The Internet Brain Segmentation Repository. Its goal is to encourage the evaluation and expansion of segmentation methods. | [6,25,26] | Segmentation of MRI images and skull stripping. |
BrainWeb | It is a Simulated Brain Database. | [27,28,29] | Reconstruction of 3D MR images based on CNN and reduction of noise from MRI images and segmentation of cerebrospinal fluid and brain volume-based CNN |
NBIA | National Biomedical Imaging Archive that is for in vivo images, these images are related to biomedical research community, industry, and academia with access to image archives. | [30] | Quantitative Imaging Network. |
The Whole Brain Atlas | This site has dozens of real images of the brain and the Harvard Whole Brain Atlas provides you with access to PET and MRI scans of normal and diseased brains. | [31,32] | Features Extracted from brain images by CNN and Serotonin Neurons. |
ISLES | Ischemic Stroke Lesion Segmentation a medical image segmentation challenge at the MICCAI 2018 and a new dataset is consist of 103 stroke patients and matches profesional segmentations. | [7,33] | Brain lesion segmentation and stroke lesion segmentation. |
Technique | Ref. | Target | Result |
---|---|---|---|
Wavelet transform (WT), Genetic algorithm (GA) and supervised learning methods (SVM). | [76,77] | Classification of brain tissues in MRI images | This technique is accurate, Easy to operate, Non-invasive and inexpensive. |
K-means, Sobel edge detection and morphological operations. | [78] | Segmentation of Brain Lesions in MRI and CT Scan Images | Achieves a high accuracy 94% in compared with manual delineation performed. |
Support vector machine (SVM) and Fuzzy c-means (FCM). | [79,80] | Detection of Brain Tumor in MRI Images | Provide accurate and more effective result for classification of brain MRI images in minimal execution time. |
K-Means, Nonsubsampled contourlet transform (NSCT) and SVM. | [81] | MRI Brain Tumor Images Classification | Higher classification accuracy. |
K-Means, Gray Level Co-occurrence Matrix (GLCM), Berkeley Wavelet Transform (BWT), Principal Component Analysis (PCA) and Kernel Support Vector Machine (KSVM). | [82] | Detection and classification of MRI images | proposed method can be used for clinical purpose for screening and then diagnosed by the radiologists with high performance and accuracy. |
Fuzzy Clustering, Gabor feature extraction and ANN. | [83] | Detection and Classification for Brain tumor | The classifier’s output helps the radiologist to make the decisions without any hesitation and achieved classification accuracy of 92.5%. |
Scheme | Dataset | Ref. | Ways of Training and Testing | Achievement |
---|---|---|---|---|
Rely on CNN | BRATS 2015 and ISLES 2015 | [7] | Dual pathway | An efficient solution processing for multi-scale processing for large image context using parallel convolutional pathways. |
BRATS 2017 and BRATS 2015 | [68] | Dual-force | For learning high-quality multi-level features used a dual-force training strategy | |
BRATS 2013 and BRATS 2015 | [65] | Patch-based | Used 3 × 3 kernels to permit deeper architectures for CNN-based segmentation method for brain MRI images. | |
Rely on DCNN | ImageNet LSVRC-2010 | [96] | Patch-based | Gained top-1 and top-5 error rates of 37.5% and 17.0% |
ISBI 2012& 2015 | [95] | End-to-end | Enabled precise localization. | |
BRATS 2013 | [71] | T1, T1c, T2 and FLAIR images | 3D segmentation problem is converted into triplanar 2D CNNs. | |
BRATS 2013 | [4] | T1, T1c, T2 and FLAIR images | Novel CNN architecture which improved accuracy and speed as presented in MICCAI 2013. | |
Rely on FCN | BRATS 2013 & 2016 | [17] | T1, T1c, T2 and FLAIR images | Integration of FCN and Conditional Random Fields for brain tumor segmentation. |
BRATS 2013 | [97] | End-to-end | Improve brain tumor segmentation performance by a symmetry-driven FCN | |
ISBR and ABIDE (17 different sites) | [5] | End-to-end | Used 3D convolutional filters and FCN for an automatic segmentation of subcortical brain regions. |
Ref. | Architectures | Layers | Advantages | Disadvantages |
---|---|---|---|---|
[102] | LeNet-5 | 7 layers | Ability to process higher resolution images need larger firmer layers. | Overfitting in some cases and no built-in mechanism to avoid this |
[103] | AlexNet | 8 layers 60 M parameters | A very rapid downsampling of the intermediate representations through convolutions and max-pooling layers. | The use of large convolution filters (5 × 5) is not encouraged shortly after that, Is not deep enough rather than another techniques. |
[104] | ZFNet | 8 layers | Improved image classification rate error in compared with Alexnet, winner of ILSVRC2012 | Feature maps are not divided across two different GPU, Thus connections between layers are dense. |
[103] | GoogleNet | 22 layers 4–5 M parameters | Winner of ILSVRC2014, Decreased the number of parameters from 60 million (AlexNet) to 4 million so network can have a large width and depth. | Consists of a hierarchy of complex inception modules/blocks that consist of operations over different scales in each of the modules. |
[105] | VGGNet | Between 11 to 19 layers the best one is 16 layers 138 M parameters | At present it is the most prefer election for extracting features from images. | Consists of 138 million parameters, which can be a bit challenging to handle. |
[105] | ResNet | 152 layers | Network learns difference to an identity mapping (residual), Faster convergence if identity is closer to the optimum. | Lower complexity than VGGNet, Overfitting would increase test but decrease training error. |
Architectures | Examples | Target | Accuracy |
---|---|---|---|
LeNet-5 | [106] | Detection of brain cancer by tensorflow | 99% |
[38] | classify Alzheimer’s brain | 96.85% | |
Alex Net | [107] | Lung nodules in chest X-ray | 64.86% |
[108] | Diagnosis of Thyroid Ultrasound Image | 90.8% | |
[109] | Classification of skin lesion | 96.86% | |
VGGNet-16 | [110] | Brain tumor classification | 84% |
[111] | Diagnosis of Prostate Cancer | 95% | |
Google Net | [112] | Thyroid Nodule Classification in Ultrasound Images | 98.29% |
[107] | Lung nodules in chest X-ray | 68.92% | |
ResNet | [113] | Brain tumor classification | 89.93% |
[114] | Pancreatic tumor classification | 91% | |
ZefNet | [115] | The trends and challenges for future edge reconfigurable platforms of deep learning. |
Ref. | Features | Methods | Testing Sample | Achievement | Accuracy |
---|---|---|---|---|---|
[112] | Type, size, shape, tumor features | DCNN and googleNet | Thyroid nodules | Improving the performance of fine-tuning and augmenting the image samples. | 98.29% |
[91] | Size, tumor features, doughnut-shaped lesion | FCN, VGG-16, U-Net | Colorectal tumors | Can remodel the current, time-consuming and non-reproducible manual segmentation method. | - |
[114] | Type, size | ResNet18, ResNet34, ResNet52 and Inception-ResNet | Pancreatic Tumors | ResNet18 with the proposed weighted loss function method achieves the best results to classify tumors. | 91% |
[117] | Type, size, shape | CAD system using a multi-view convolutional network | Pulmonary Nodule | Boosts the detection sensitivity from 85.7% to 93.3%. | - |
[38] | Shape, scale | CNN and LeNet-5 | Alzheimer’s disease classification | Possible to generalize this method to predict different stages of Alzheimer’s disease for different age groups. | 96.85% |
[109] | Type, color image lesions | transfer learning and Alex-net | skin lesions classification | Higher performance than existing methods. | 96.86% |
[111] | Image lesion, type | VGGNet and patch-based DCNN | Prostate cancer | Enhanced prediction | 95% |
[119] | Textures | AlexNet | Breast cancer | Showed that accuracy obtained by CNN on BreaKHis dataset was improved. | - |
Existing Challenges | Example | Ideas as Potential Solution |
---|---|---|
Often classification or segmentation in medical imaging is introduced as a binary task, normal versus abnormal, object versus background. | In some rare situations, normal tissues and categories can find benign categories. | By presenting accurate annotations of all possible subclasses, we can convert the deep learning system into a multi-class system [39]. |
Depending on the task performed in medical imaging, images for the unusual class might be challenging to find. | Most cancerous lesions do not cause death; in mammograms, a suspicious lesion is usually not cancerous. | Conducted a thorough evaluation of data augmentation strategies for lesion segmentation [65]. |
In a deep learning network, balancing between the number of imaging features with the number of clinical features is a challenge. | Physicians, for an accurate diagnosis, usually need to use descriptive information. | Connect the whole image to the deep network and use different types of evaluation to guide learning [39]. |
In CAD, the biggest challenges are the diversity in shape and intensity of tumors or lesions as well as the existence of differences in the imaging protocol in the same imaging modality. | Use of simpler machine learning appeals in Rician noise, non-isotropic resolution, and bias field effects. Automatic handling is not usable in MRI. | For classification of hand-designed features in a through, separate step, conventional machine learning approaches are trained [138]. |
Deep learning does not leave a search trail to clarify its decisions, so it is considered a black box. | To specify an exact feature, such as an edge, circle, or class activation maps (CAMs), that localizes the important regions in an input used for the prediction. | Feature visualization is a feature which is identified in the feature maps. Attribution is a part of the input responsible for the corresponding prediction [84]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabahmadi, M.; Farahbakhsh, R.; Rezazadeh, J. Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging. Sensors 2022, 22, 1960. https://doi.org/10.3390/s22051960
Arabahmadi M, Farahbakhsh R, Rezazadeh J. Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging. Sensors. 2022; 22(5):1960. https://doi.org/10.3390/s22051960
Chicago/Turabian StyleArabahmadi, Mahsa, Reza Farahbakhsh, and Javad Rezazadeh. 2022. "Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging" Sensors 22, no. 5: 1960. https://doi.org/10.3390/s22051960
APA StyleArabahmadi, M., Farahbakhsh, R., & Rezazadeh, J. (2022). Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging. Sensors, 22(5), 1960. https://doi.org/10.3390/s22051960