A Study on the Applicability of Thermodynamic Sensors in Fermentation Processes in Selected Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Upper dried yeast of Ale beer, Safale S-04, Fermentis, Lesaffre Group, Marcq-en-Barœul, France, 11.5 g;
- Maltose LIGHT (Malt extract—dried), Mr. Sládek s.r.o., Pivovar-Šenov, Obecní 6, 739 34 Šenov, the Czech Republic, 1 kg;
- Drinking water from the common water supply system of the city of Brno, the Czech Republic, 7 L.
2.2. Methods
2.3. Experimental Measuring Equipment
3. Results and Discussion
3.1. System Testing Using Baker’s Yeast
3.2. Monitoring Pizza Dough Leavening
3.3. Monitoring Beer Fermentation
3.4. Monitoring Yogurt Fermentation with the Addition of Non-Traditional Ingredients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, S.E. The Art of Fermentation: An In-Depth Exploration of Essential Concepts and Processes from Around the World, 1st ed.; Chelsea Green Publishing Co.: White River Junction, VT, USA, 2012; ISBN 978-1-60358-286-5. [Google Scholar]
- Cocolin, L.; Ercolini, D. Molecular Techniques in the Microbial Ecology of Fermented Foods, 1st ed.; Springer: New York, NY, USA, 2008; ISBN 978-0-387-74519-0. [Google Scholar]
- Redzepi, R.; Zilber, D. The Norma Guide to Fermentation. Artisan Division of Workman, 1st ed.; Artisan: New York, NY, USA, 2018; ISBN 9781579657185. [Google Scholar]
- Caplice, E.; Fitzgerald, G. Food Fermentation: Role of Microorganisms in Food Production and Preservation. Int. J. Food Microbiol. 1991, 50, 131–149. [Google Scholar] [CrossRef]
- Struyf, N.; Van Der Maelen, E.; Hemdane, S.; Verspreet, J.; Verstrepen, K.J.; Courtin, M.C. Bread Dough and Baker’s Yeast: An Uplifting Synergy. Compr. Rev. Food Sci. Food Saf. 2017, 16, 850–867. [Google Scholar] [CrossRef] [Green Version]
- Lahtinen, S. (Ed.) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Hui, Y.H.; Meunier-Goddik, L.; Josephsen, J.; Nip, W.-K.; Stanfield, P.S.; Todra, F. (Eds.) Handbook of Food and Beverage Fermentation Technology, 3rd ed.; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Jiang, H.; Zhang, H.; Chen, Q.; Mei, C.; Liu, G. Recent advances in electronic nose techniques for monitoring of fermentation process. World J. Microbiol. Biotechnol. 2015, 31, 1845–1852. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review. Anal. Chim. Acta 2013, 804, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Slouka, C.; Wurm, D.J.; Brunauer, G.; Welzl-Wachter, A.; Spadiut, O.; Fleig, J.; Herwig, C. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations. Sensors 2016, 16, 1900. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, G.C.; Meindl, A.; Rotter, B.; Gruber, A.; Slouka, C.; Schnabel, T.; Petutschnigg, A. Electrochemical Impedance Spectroscopy for Microbiological Pro-Cesses: On the Way to a Monitoring Tool for the Determination of Biomass. Biomed. J. Sci. Tech. Res. 2021, 35, 27548–27557. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Mlček, J.; Vojáčková, K.; Faměra, O.; Búran, M.; Hlobilová, V.; Bučková, M.; Baroň, M.; Sochor, J. Sensor Systems for Detecting Dough Properties Fortified with Grape Pomace and Mealworm Powders. Sensors 2020, 20, 3569. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Řezníček, M.; Kouřimská, L. The estimated possibilities of process monitoring in milk production by the simple thermodynamic sensors. Potravinárstvo 2016, 9, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.P. Measures of cell death and deactivation and their meaning: Part I. Process Biochem. 1987, 22, 118–128. [Google Scholar]
- Jones, R.P. Measures of cell death and deactivation and their meaning: Part II. Process Biochem. 1987, 23, 130–134. [Google Scholar]
- Lloyd, D.; Hayes, A.J. Vigour, vitality and viability of microorganisms. FEMS Microbiol. Lett. 1995, 133, 1–7. [Google Scholar] [CrossRef]
- Attfield, P.V.; Kletsas, S.; Veal, D.A.; Van Rooijen, R.; Bell, P.J.L. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts. J. Appl. Microbiol. 2000, 89, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; You, E.; Panneerselvam, R. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light Sci. Appl. 2021, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- García-Burgos, M.; Moreno-Fernández, J.; Alférez, M.J.M.; Díaz-Castro, J.; López-Aliaga, I. New perspectives in fermented dairy products and their health relevance. J. Funct. Foods 2020, 72, 104059. [Google Scholar] [CrossRef]
- Adámek, M.; Řezníček, M.; Adámková, A. The simple thermodynamic sensors for process monitoring in milk production. Electroscope 2010, 4, 1–3. [Google Scholar]
- Gutsal, V.; Sieuwerts, S.; Bibiloni, R. High-throughput pH monitoring method for application in dairy fermentations. J. Dairy Res. 2018, 85, 453–459. [Google Scholar] [CrossRef]
- Guo, C.; Xin, L.; Dong, Y.; Zhang, X.; Wang, X.; Fu, H.; Wang, Y. Dielectric Properties of Yogurt for Online Monitoring of Fermentation Process. Food Bioprocess Technol. 2018, 11, 1096–1100. [Google Scholar] [CrossRef]
- Muncan, J.; Tei, K.; Tsenkova, R. Real-Time Monitoring of Yogurt Fermentation Process by Aquaphotomics Near-Infrared Spectroscopy. Sensors 2021, 21, 177. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Beer fermentation: Monitoring of process parameters by FT-NIR and multivariate data analysis. Food Chem. 2014, 155, 279–286. [Google Scholar] [CrossRef]
- Mains, T.P.; Payne, F.A.; Sama, M.P. Monitoring Yogurt Culture Fermentation and Predicting Fermentation Endpoint with Fluorescence Spectroscopy. Trans. ASABE 2017, 60, 529–536. [Google Scholar] [CrossRef]
- Akiyama, M.; Ishigaki, K.; Sakaue, S. Characterizing rare and low-frequency height-associated variants in the Japanese population. Nat. Commun. 2019, 10, 4393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adámková, A.; Tančinová, D.; Adámek, M. The Estimated Possibilities of Thermodynamic Sensors in Food Industry; Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2013. [Google Scholar]
- Jáneš, P. Monitorovací Zařízení pro Kvasné Procesy Využívající Termodynamické Sensory (In Czech, Monitoring Equipment for Fermentation Processes Using the Thermodynamic Sensors). Ph.D. Thesis, Brno University of Technology, Brno, Czech Republic, 23 June 2020. Available online: https://dspace.vutbr.cz/handle/11012/190338 (accessed on 9 January 2022).
- Anton Paar GmbH. Beer Fermentation Monitoring. Datasheet D32IA009EN-C. Available online: https://www.mtbrandao.com/files/products/D32IA009EN_C_AppRep_Beer_FermentationMonitoring.pdf (accessed on 9 January 2022).
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. The application of state-of-the-art analytic tools (biosensors and spectroscopy) in beverage and food fermentation process monitoring. Fermentation 2015, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.L.; Preedy, V. Electronic Noses and Tongues in Food Science, 3rd ed.; Academic Press, Elsevier Inc.: London, UK, 2016; ISBN 9780128002438. [Google Scholar]
- Kurz, T.; Fellner, M.; Becker, A.T.; Delgado, A. Observation and Control of the Beer Fermentation Using Cognitive Methods. J. Inst. Brew. 2001, 107, 241–252. [Google Scholar] [CrossRef]
- Tarkiainen, V.; Kotiaho, T.; Mattila, I.; Virkajärvi, I.; Aristidou, A.; Ketola, R.A. On-line monitoring of continuous beer fermentation process using automatic membrane inlet mass spectrometric system. Talanta 2005, 65, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Kutyła-Olesiuk, A.; Zaborowski, M.; Prokaryn, P.; Ciosek, P. Monitoring of beer fermentation based on hybrid electronic tongue. Bioelectrochemistry 2012, 87, 104–113. [Google Scholar] [CrossRef]
Amount | Ingredients | Producer |
---|---|---|
1 g | Dried yeast | Thymos, spol. s r.o., Veľká Lomnica, Slovakia |
2.5 g | Beet sugar | Tereos TTD, Dobrovice, Czech Republic |
150 mL | Drinking water | Water supply system of the city of Brno, Czech Republic |
Amount | Ingredients | Producer |
---|---|---|
40 g | Smooth wheat flour with a high gluten content “Babiččina volba hladká mouka na kynuté těsto” | GoodMills Česko s.r.o., Prague, Czech Republic |
0.6 g | Beet sugar | Tereos TTD, Dobrovice, Czech Republic |
0.6 g | Solsanka® Sea salt with iodine and fluorine | Solsan, a.s., Prague, Czech Republic |
2.4 mL | Olive oil Franz Josef Kaiser Extra virgin olive oil | GASTON, s.r.o., Zlín, Czech Republic |
0.04 g | Gluten-free fresh baker’s yeast brand FALA | Lesaffre Magyarország Ltd., Budapest, Hungary |
20 mL | Drinking water | Water supply system of the city of Brno, Czech Republic |
Insect Content | 0% | 5% | 10% |
---|---|---|---|
Ingredients | |||
Flour | 40 g | 38 g | 36 g |
Flour from edible insects | 0 g | 2 g | 4 g |
Water | 20 g | 20 g | 20 g |
Sugar | 0.6 g | 0.6 g | 0.6 g |
Salt | 0.6 g | 0.6 g | 0.6 g |
Olive oil | 2.4 mL | 2.4 mL | 2.4 mL |
Yeast | 0.04 g | 0.04 g | 0.04 g |
Amount | Ingredients | Producer |
---|---|---|
150 mL | Organic milk | Olma, a.s., Zábřeh, Czech Republic |
1 g | Lactoflora, dried yoghurt for the preparation of sour milk products | Milcom a.s., Prague, the Czech Republic |
2.5 g | flour from edible insect or dried fruits | Preparation described in the article |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamek, M.; Matyas, J.; Adamkova, A.; Mlcek, J.; Buran, M.; Cernekova, M.; Sevcikova, V.; Zvonkova, M.; Slobodian, P.; Olejnik, R. A Study on the Applicability of Thermodynamic Sensors in Fermentation Processes in Selected Foods. Sensors 2022, 22, 1997. https://doi.org/10.3390/s22051997
Adamek M, Matyas J, Adamkova A, Mlcek J, Buran M, Cernekova M, Sevcikova V, Zvonkova M, Slobodian P, Olejnik R. A Study on the Applicability of Thermodynamic Sensors in Fermentation Processes in Selected Foods. Sensors. 2022; 22(5):1997. https://doi.org/10.3390/s22051997
Chicago/Turabian StyleAdamek, Martin, Jiri Matyas, Anna Adamkova, Jiri Mlcek, Martin Buran, Martina Cernekova, Veronika Sevcikova, Magdalena Zvonkova, Petr Slobodian, and Robert Olejnik. 2022. "A Study on the Applicability of Thermodynamic Sensors in Fermentation Processes in Selected Foods" Sensors 22, no. 5: 1997. https://doi.org/10.3390/s22051997
APA StyleAdamek, M., Matyas, J., Adamkova, A., Mlcek, J., Buran, M., Cernekova, M., Sevcikova, V., Zvonkova, M., Slobodian, P., & Olejnik, R. (2022). A Study on the Applicability of Thermodynamic Sensors in Fermentation Processes in Selected Foods. Sensors, 22(5), 1997. https://doi.org/10.3390/s22051997