Development and Validation of a Framework for Smart Wireless Strain and Acceleration Sensing
Abstract
:1. Introduction
2. Development of Wireless Strain Sensor Board
2.1. Wheatstone Bridge
2.2. Precisely Balanced Wheatstone Bridge and Signal Amplification
2.3. Shunt Calibration and Temperature Compensation
2.4. Integration with the Xnode Platform
3. Software Implementation for Multimetric Sensing Framework
4. Experimental Validation
4.1. Validation for Static Strain Measurements
4.2. Validation for Dynamic Strain Measurements
5. Application: Multimetric Displacement Estimation
5.1. Kalman Filter-Based Displacement Estimation
5.1.1. Strain-Based Displacement Estimation
5.1.2. Laboratory Validation of Multimetric Displacement Estimation
6. Camera Motion Compensation
6.1. Multimetric-Based Camera Motion Compensation
6.2. Laboratory Experiment for Camera Motion Compensation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Investigation of 15 March 2018 Pedestrian Bridge Collapse at Florida International University, Miami, FL, USA. Available online: https://www.osha.gov/doc/engineering/pdf/2019_r_03.pdf (accessed on 9 September 2021).
- Kallergis, K.; Dinkova, L. Engineer Raised Red Flags More than 2 Years before Surfside Condo Collapsed. Available online: https://therealdeal.com/miami/2021/06/26/engineer-raised-red-flags-more-than-2-years-before-surfside-condo-collapsed/ (accessed on 9 September 2021).
- Hotel Collapse in China’s Suzhou Kills 17, Injures Five—BBC News. Available online: https://www.bbc.com/news/world-asia-china-57830767 (accessed on 25 September 2021).
- Death Toll from Cairo Building Collapse up to 25 after Two Bodies Recovered-Politics-Egypt-Ahram Online. Available online: https://english.ahram.org.eg/NewsContent/1/64/407944/Egypt/Politics-/Death-toll-from-Cairo-building-collapse-up-to-;-se.aspx (accessed on 25 September 2021).
- Alam, N.; Shajib, K.A.S.; Mamun, M.A. Bridge Health Monitoring System. In Proceedings of the IABSE-JSCE Joint Conference on Advances in Bridge Engineering-IV, Dhaka, Bangladesh, 26–27 August 2020. [Google Scholar]
- Sohn, H.; Farrar, C.R.; Hemez, F.; Czarnecki, J. A Review of Structural Health Monitoring 1996–2001. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1062.7077&rep=rep1&type=pdf (accessed on 9 November 2021).
- Çelebi, M. Real-Time Seismic Monitoring of the New Cape Girardeau Bridge and Preliminary Analyses of Recorded Data: An Overview. Earthq. Spectra 2006, 22, 609–630. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okada, K.; Saruta, M. Application of earthquake early warning system to seismic-isolated buildings research on seismic isolation methods view project application of viscoelastic damper (ved) view project application of earthquake early warning system to seismic-isolated buildings. J. Disaster Res. 2009, 4, 242–250. [Google Scholar]
- Yamazaki, F.; Motomura, H.; Hamada, T. Damage assessment of expressway networks in japan based on seismic monitoring. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Yun, C.B.; Cho, S.; Park, H.J.; Min, J.; Park, J.W. Smart Wireless Sensing and Assessment for Civil Infrastructure. Struct. Infrastruct. Eng. 2014, 10, 534–550. [Google Scholar] [CrossRef]
- Meyer, J.; Bischoff, R.; Feltrin, G.; Motavalli, M. Wireless Sensor Networks for Long-Term Structural Health Monitoring. Smart Struct. Syst. 2010, 6, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.H.; Li, J.; Jo, H.; Park, J.W.; Cho, S.; Spencer, B.F.; Jung, H.J. A Wireless Smart Sensor Network for Automated Monitoring of Cable Tension. Smart Mater. Struct. 2014, 23, 025006. [Google Scholar] [CrossRef]
- Fu, Y.; Hoang, T.; Mechitov, K.; Kim, J.R.; Zhang, D.; Spencer, B.F. Sudden Event Monitoring of Civil Infrastructure Using Demand-Based Wireless Smart Sensors. Sensors 2018, 18, 4480. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.; Fu, Y.; Mechitov, K.; Sánchez, F.G.; Kim, J.R.; Zhang, D.; Spencer, B.F. Autonomous End-to-End Wireless Monitoring System for Railroad Bridges. Adv. Bridge Eng. 2020, 1, 17. [Google Scholar] [CrossRef]
- Lynch, J.P.; Law, K.H.; Kiremidjian, A.S.; Kenny, T.W.; Carryer, E.; Partridge, A. The design of a wireless sensing unit for structural health monitoring. In Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, 12–14 September 2001; pp. 12–14. [Google Scholar]
- Kim, S.; Pakzad, S.; Culler, D.; Demmel, J.; Fenves, G.; Glaser, S.; Turon, M. Poster abstract: Wireless sensor networks for structural health monitoring. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006; pp. 427–428. [Google Scholar]
- Jo, H.; Rice, J.A.; Spencer, B.F., Jr.; Nagayama, T. Development of High-Sensitivity Accelerometer Board for Structural Health Monitoring. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010; International Society for Optics and Photonics: San Diego, CA, USA, 25 March 2010; Volume 7647, p. 764706. [Google Scholar]
- Bedon, C.; Bergamo, E.; Izzi, M.; Noè, S. Prototyping and Validation of MEMS Accelerometers for Structural Health Monitoring—The Case Study of the Pietratagliata Cable-Stayed Bridge. J. Sens. Actuator Netw. 2018, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Fu, Y.; Chow, R.; Spencer, B.F.; Park, J.W.; Mechitov, K. Development of a High-Sensitivitywireless Accelerometer for Structural Health Monitoring. Sensors 2018, 18, 262. [Google Scholar] [CrossRef]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Lee, D.H.; Spencer, B.F. Development and Full-Scale Validation of High-Fidelity Data Acquisition on a next-Generation Wireless Smart Sensor Platform. Adv. Struct. Eng. 2019, 22, 3512–3533. [Google Scholar] [CrossRef]
- Shajihan, S.A.V.; Chow, R.; Mechitov, K.; Fu, Y.; Hoang, T.; Spencer, B.F. Development of Synchronized High-Sensitivity Wireless Accelerometer for Structural Health Monitoring. Sensors 2020, 20, 4169. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, T.; Ruiz-Sandoval, M.; Spencer, B.F., Jr.; Mechitov, K.A.; Agha, G. Wireless Strain Sensor Development for Civil Infrastructure. Trans. Soc. Instrum. Control Eng. 2004, E-3, 104–109. [Google Scholar]
- Choi, H.; Choi, S.; Cha, H. Structural Health Monitoring System Based on Strain Gauge Enabled Wireless Sensor Nodes. In Proceedings of the INSS 2008 5th International Conference on Networked Sensing Systems, IKanazawa, Japan, 17–19 June 2008; pp. 211–214. [Google Scholar]
- Whelan, M.J.; Janoyan, K.D. Design of a Robust, High-Rate Wireless Sensor Network for Static and Dynamic Structural Monitoring. J. Intell. Mater. Syst. Struct. 2009, 20, 849–863. [Google Scholar] [CrossRef]
- Jo, H.; Park, J.; Spencer, B.F., Jr.; Jung, H.-J. Design and Validation of High-Precision Wireless Strain Sensors for Structural Health Monitoring of Steel Structures. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012; International Society for Optics and Photonics: San Diego, CA, USA, 26 April 2012; Volume 8345, p. 834518. [Google Scholar]
- Liu, C.; Teng, J.; Wu, N. A Wireless Strain Sensor Network for Structural Health Monitoring. Shock Vib. 2015, 2015. [Google Scholar] [CrossRef]
- Won, J.; Park, J.-W.; Park, J.; Shin, J.; Park, M. Development of a Reference-Free Indirect Bridge Displacement Sensing System. Sensors 2021, 21, 5647. [Google Scholar] [CrossRef]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Memon, S.A.; Spencer, B.F. Efficient and High-Precision Time Synchronization for Wireless Monitoring of Civil Infrastructure Subjected to Sudden Events. Struct. Control Health Monit. 2021, 28, e2643. [Google Scholar] [CrossRef]
- Fu, Y.; Hoang, T.; Kim, J.; Zhang, D. XShake: Intelligent Wireless System for Cost-Effective Real-Time Seismic Monitoring of Civil Infrastructure NEESR: Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures View Project EduInd4: Educating Graduate Students for Industry 4.0 View Project. Smart Struct. Syst. 2021, 28, 483–497. [Google Scholar] [CrossRef]
- Kim, S.; Spencer, B.F.; Kim, H.K. Automated Long-Term Damping Estimation of the Cable-Stayed Bridge Using Faulty Data in Wireless Sensor Network. In Proceedings of the Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, the 10th International Conference on Bridge Maintenaince, Safety and Management, IABMAS 2020; CRC Press/Balkema: Sapporo, Japan, 2021; pp. 3049–3053. [Google Scholar]
- Wheatstone Bridge—Wikipedia. Available online: https://en.wikipedia.org/wiki/Wheatstone_bridge (accessed on 3 October 2021).
- Bilello, C.; Bergman, L.A.; Kuchma, D. Experimental Investigation of a Small-Scale Bridge Model under a Moving Mass. J. Struct. Eng. 2004, 130, 799–804. [Google Scholar] [CrossRef]
- Micro-Measurements Additional Details. Available online: www.micro-measurements.com (accessed on 9 September 2021).
- Nagayama, T.; Sim, S.H.; Miyamori, Y.; Spencer, B.F. Issues in Structural Health Monitoring Employing Smart Sensors. Smart Struct. Syst. 2007, 3, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Gindy, M.; Nassif, H.H.; Velde, J. Bridge Displacement Estimates from Measured Acceleration Records. Transp. Res. Rec. 2007, 2028, 136–145. [Google Scholar] [CrossRef]
- Chang, S.J.; Kim, N.S. Estimation of Displacement Response from FBG Strain Sensors Using Empirical Mode Decomposition Technique. Exp. Mech. 2012, 52, 573–589. [Google Scholar] [CrossRef]
- Kang, L.H.; Kim, D.K.; Han, J.H. Estimation of Dynamic Structural Displacements Using Fiber Bragg Grating Strain Sensors. J. Sound Vib. 2007, 305, 534–542. [Google Scholar] [CrossRef]
- Treiber, J.; Mueller, U.C.; Han, J.-H.; Baier, H. Filtering Techniques in the Dynamic Deformation Estimation Using Multiple Strains Measured by FBGs. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008; International Society for Optics and Photonics: San Diego, CA, USA, 27 March 2008; Volume 6932, p. 69322A. [Google Scholar]
- Park, J.W.; Sim, S.H.; Jung, H.J. Displacement Estimation Using Multimetric Data Fusion. IEEE/ASME Trans. Mechatron. 2013, 18, 1675–1682. [Google Scholar] [CrossRef]
- Park, J.W.; Sim, S.H.; Jung, H.J. Wireless Displacement Sensing System for Bridges Using Multi-Sensor Fusion. Smart Mater. Struct. 2014, 23, 45022. [Google Scholar] [CrossRef]
- Cho, S.; Sim, S.H.; Park, J.W.; Lee, J. Extension of Indirect Displacement Estimation Method Using Acceleration and Strain to Various Types of Beam Structures. Smart Struct. Syst. 2014, 14, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Yun, C.B.; Sim, S.H. Displacement Estimation of Bridge Structures Using Data Fusion of Acceleration and Strain Measurement Incorporating Finite Element Model. Smart Struct. Syst. 2015, 15, 645–663. [Google Scholar] [CrossRef] [Green Version]
- Smyth, A.; Wu, M. Multi-Rate Kalman Filtering for the Data Fusion of Displacement and Acceleration Response Measurements in Dynamic System Monitoring. Mech. Syst. Signal Process. 2007, 21, 706–723. [Google Scholar] [CrossRef]
- Cho, S.; Park, J.W.; Palanisamy, R.P.; Sim, S.H. Reference-Free Displacement Estimation of Bridges Using Kalman Filter-Based Multimetric Data Fusion. J. Sens. 2016, 2016, 3791856. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Sohn, H. Autonomous Dynamic Displacement Estimation from Data Fusion of Acceleration and Intermittent Displacement Measurements. Mech. Syst. Signal Process. 2014, 42, 194–205. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, K.; Xia, Y.; Gao, F.; Weng, S.; Sun, Y.; Hu, Q. Multi-Rate Data Fusion for Dynamic Displacement Measurement of Beam-like Supertall Structures Using Acceleration and Strain Sensors. Struct. Health Monit. 2020, 19, 520–536. [Google Scholar] [CrossRef]
- Sarwar, M.Z.; Park, J.W. Bridge Displacement Estimation Using a Co-Located Acceleration and Strain. Sensors 2020, 20, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, M.; Bhowmik, B.; Tiwari, A.K.; Hazra, B. Online Damage Detection Using Recursive Principal Component Analysis and Recursive Condition Indicators. Smart Mater. Struct. 2017, 26, 085017. [Google Scholar] [CrossRef]
- Gomez, F.; Park, J.W.; Spencer, B.F. Reference-Free Structural Dynamic Displacement Estimation Method. Struct. Control Health Monit. 2018, 25, e2209. [Google Scholar] [CrossRef]
- Chopra, A.K. Dynamics of Structures. Theory and Applications to Earthquake Engineering, 4th ed.; Hall, W.J., Ed.; Prentice-Hall International Series in Civil Engineering and Engineering Mechanics; Prentice Hall College Division: New York, NY, USA, 2012. [Google Scholar]
- Ji, Y. A Computer Vision-Based Approach for Structural Displacement Measurement. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010; International Society for Optics and Photonics: San Diego, CA, USA, 25 March 2010; Volume 7647, p. 76473H. [Google Scholar]
- Lee, J.; Lee, K.C.; Cho, S.; Sim, S.H. Computer Vision-Based Structural Displacement Measurement Robust to Light-Induced Image Degradation for in-Service Bridges. Sensors 2017, 17, 2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Feng, M.Q. Edge-Enhanced Matching for Gradient-Based Computer Vision Displacement Measurement. Comput. -Aided Civ. Infrastruct. Eng. 2018, 33, 1019–1040. [Google Scholar] [CrossRef]
- Rodgers, C.; Wang, S.; Welsh, B.; Shajian, S.A.; Golecki, T.; Eick, B.; Fillmore, T.; Spencer, B.F. Vision-Based Displacement Estimation of Large-Scale Infrastructure. In Proceedings of the 13th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, 15 March 2022. [Google Scholar]
- Xu, Y.; Brownjohn, J.M.W.; Huseynov, F. Accurate Deformation Monitoring on Bridge Structures Using a Cost-Effective Sensing System Combined with a Camera and Accelerometers: Case Study. J. Bridge Eng. 2019, 24, 05018014. [Google Scholar] [CrossRef] [Green Version]
- Lydon, D.; Lydon, M.; Taylor, S.; del Rincon, J.M.; Hester, D.; Brownjohn, J. Development and Field Testing of a Vision-Based Displacement System Using a Low Cost Wireless Action Camera. Mech. Syst. Signal Process. 2019, 121, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI) An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Kim, S.W.; Jeon, B.G.; Kim, N.S.; Park, J.C. Vision-Based Monitoring System for Evaluating Cable Tensile Forces on a Cable-Stayed Bridge. Struct. Health Monit. 2013, 12, 440–456. [Google Scholar] [CrossRef]
- Yoon, H.; Shin, J.; Spencer, B.F. Structural Displacement Measurement Using an Unmanned Aerial System. Comput. -Aided Civ. Infrastruct. Eng. 2018, 33, 183–192. [Google Scholar] [CrossRef]
- Chen, J.G.; Adams, T.M.; Sun, H.; Bell, E.S.; Büyüköztürk, O. Camera-Based Vibration Measurement of the World War I Memorial Bridge in Portsmouth, New Hampshire. J. Struct. Eng. 2018, 144, 04018207. [Google Scholar] [CrossRef]
- Chen, J.G.; Davis, A.; Wadhwa, N.; Neal; Durand, F.; Freeman, W.T.; Büyüköztürk, O. Video Camera-Based Vibration Measurement for Civil Infrastructure Applications. J. Infrastruct. Syst. 2017, 23, B4016013. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Length of steel beam | 11 in |
Thickness of steel beam | 0.048 in |
Strain gage location | 3 in from fixed end |
Weights used | 27.4 g, 47.1 g and 97.3 g |
Weight location | 1 in from free end |
Weight (g) | Theoretical (με) | Xnode (με) |
---|---|---|
27.4 | 35.92 | 36.51 |
47.1 | 62.85 | 63.21 |
97.3 | 134.7 | 136 |
Test | Root–Mean–Square Error (mm) | Maximum Absolute Error (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Strain | Acceleration | Multimetric | % Improvement | Strain | Acceleration | Multimetric | % Improvement | |
1 | 1.37 | 2.25 | 0.71 | 48 | 6.40 | 7.47 | 3.46 | 46 |
2 | 1.12 | 1.16 | 0.62 | 45 | 5.42 | 5.37 | 3.70 | 31 |
3 | 0.90 | 2.00 | 0.38 | 58 | 4.86 | 6.82 | 1.99 | 59 |
Average | 1.13 | 1.80 | 0.57 | 50 | 5.56 | 6.55 | 3.05 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawal, O.; Najafi, A.; Hoang, T.; Shajihan, S.A.V.; Mechitov, K.; Spencer, B.F., Jr. Development and Validation of a Framework for Smart Wireless Strain and Acceleration Sensing. Sensors 2022, 22, 1998. https://doi.org/10.3390/s22051998
Lawal O, Najafi A, Hoang T, Shajihan SAV, Mechitov K, Spencer BF Jr. Development and Validation of a Framework for Smart Wireless Strain and Acceleration Sensing. Sensors. 2022; 22(5):1998. https://doi.org/10.3390/s22051998
Chicago/Turabian StyleLawal, Omobolaji, Amirali Najafi, Tu Hoang, Shaik Althaf V. Shajihan, Kirill Mechitov, and Billie F. Spencer, Jr. 2022. "Development and Validation of a Framework for Smart Wireless Strain and Acceleration Sensing" Sensors 22, no. 5: 1998. https://doi.org/10.3390/s22051998
APA StyleLawal, O., Najafi, A., Hoang, T., Shajihan, S. A. V., Mechitov, K., & Spencer, B. F., Jr. (2022). Development and Validation of a Framework for Smart Wireless Strain and Acceleration Sensing. Sensors, 22(5), 1998. https://doi.org/10.3390/s22051998