Possible Applications of Edge Computing in the Manufacturing Industry—Systematic Literature Review
Abstract
:1. Introduction
2. Goal and Methodology of the Research
2.1. General Overview and Research Questions
- A systematic literature review in the field of EC;
- Text mining analysis of identified keywords;
- Qualitative analysis of abstracts and full texts in terms of technologies used in production areas.
2.2. Systematic Literature Review
2.3. The Text Mining Procedure
2.4. Qualitative Analysis of Data
3. The Research Results and Analysis
3.1. Topic Definitions
3.2. Network and Its Visualization
- The same publication could have been indexed in multiple databases;
- The number of occurrence of a term in a database was less than 10 (in such cases, the term was not included in the results).
3.3. Identified Challenges and Technologies Related to EC in Production Systems
4. Discussion
4.1. Topics Related to Edge Computing
- In each of the three databases, the most- and the least-discussed topics related to the Edge Computing term were the same as mentioned previously (see Table 6, last four rows);
- Compared to the dataset composed of WoS, IEEE Xplore, and Scopus, WoS contained fewer papers in which the term Edge Computing was connected to the terms Cloud Computing, Industry 4.0, Artificial Intelligence, and Resource Allocation;
- The IEEE Xplore database had more publications where the term Edge Computing was connected to the term Industrial Internet of Things and fewer connected to the term Digital Twin;
- The SCOPUS database contained fewer papers in which the term Edge Computing was connected to the term Industrial Internet of Things;
- The overall content of the considered databases in the context of terms related to EC was similar. Therefore, for a more-detailed publication analysis, one database can be chosen instead of the whole set. In such a case, we expect that analysis results will have an error within the limits of RMSΔ.
4.2. Edge Computing Possible Applications
4.3. Identified Directions for Further Development and Research in the Areas of Edge Computing Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mabkhot, M.M.; Ferreira, P.; Maffei, A.; Podržaj, P.; Mądziel, M.; Antonelli, D.; Lanzetta, M.; Barata, J.; Boffa, E.; Finžgar, M.; et al. Mapping Industry 4.0 Enabling Technologies into United Nations Sustainability Development Goals. Sustainability 2021, 13, 2560. [Google Scholar] [CrossRef]
- UN Statistical Commission. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; UN Statistical Commission: New York, NY, USA, 2017. [Google Scholar]
- Psarommatis, F.; May, G.; Dreyfus, P.A.; Kiritsis, D. Zero defect manufacturing: State-of-the-art review, shortcomings and future directions in research. Int. J. Prod. Res. 2020, 58, 1–17. [Google Scholar] [CrossRef]
- Chang, Y.J.; Kang, Y.; Hsu, C.L.; Chang, C.T.; Chan, T.Y. Virtual metrology technique for semiconductor manufacturing. In Proceedings of the The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 5289–5293. [Google Scholar] [CrossRef]
- Sustoa, G.A.; Pampurib, S.; Schirrub, A.; Beghia, A.; DeNicolaob, G. Multi-step virtual metrology for semiconductor manufacturing. Comput. Oper. Res. 2015, 53, 328–337. [Google Scholar] [CrossRef]
- Papageorgiou, E.I.; Theodosiou, T.; Margetis, G.; Dimitriou, N.; Charalampous, P.; Tzovaras, D.; Samakovlis, I. Short Survey of Artificial Intelligent Technologies for Defect Detection in Manufacturing. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Stadnicka, D.; Bonci, A.; Lorenzoni, E.; Dec, G.; Pirani, M. Symbiotic cyber-physical Kanban 4.0: An Approach for SMEs. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 140–147. [Google Scholar]
- Bajic, B.; Rikalovic, A.; Suzic Piuri, N.V. Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective. IEEE Syst. J. 2021, 15, 546–559. [Google Scholar] [CrossRef]
- Telukdarie, A.; Sishi, M.N. Enterprise Definition for Industry 4.0. In Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok, Thailand, 16–19 December 2018; pp. 849–853. [Google Scholar]
- Oztemel, E.; Gursev, S. A Taxonomy of Industry 4.0 and Related Technologies. In Industry 4.0. Current Status and Future Trends; Ortiz, J.H., Ed.; IntechOpen: London, UK, 2020; pp. 1–21. [Google Scholar]
- Amadio, R.; Isgandarova, A.; Mazzei, D. Building a Taxonomony of Industry 4.0 Needs and Enabling Technologies. 2021. Available online: https://easychair.org/publications/preprint/WJtF (accessed on 13 February 2022). [CrossRef]
- Kutnjak, A.; Pihiri, I.; Furjan, M.T. Digital Transformation Case Studies across Industries–Literature Review. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1293–1298. [Google Scholar] [CrossRef]
- Patyal, V.S.; Sarma, P.R.S.; Modgil, S.; Nag, T.; Dennehy, D. Mapping the links between Industry 4.0, circular economy and sustainability: A systematic literature review. J. Enterp. Inf. Manag. 2022, 35, 1–35. [Google Scholar] [CrossRef]
- Sanchez, D.O.M. Sustainable development challenges and risks of Industry 4.0: A literature review. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; De Felice, F. Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability 2020, 12, 492. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Loures, E.D.F.R.; Deschamps, F. Industrial Internet of Things: A systematic literature review and insights. IEEE Internet Things J. 2018, 5, 4515–4525. [Google Scholar] [CrossRef]
- Belhadi, A.; Zkik, K.; Cherrafi, A.; Sha’ri, M.Y. Understanding big data analytics for manufacturing processes: Insights from literature review and multiple case studies. Comput. Ind. Eng. 2019, 137, 106099. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, R.; Acharya, P. Analysing the adoption of cloud computing service: A systematic literature review. Glob. Knowl. Mem. Commun. 2021, 70, 114–153. [Google Scholar] [CrossRef]
- Alouffi, B.; Hasnain, M.; Alharbi, A.; Alosaimi, W.; Alyami, H.; Ayaz, M. A systematic literature review on cloud computing security: Threats and mitigation strategies. IEEE Access 2021, 9, 57792–57807. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; Rodríguez-González, S.; García Coria, J.A.; La Prieta, F.D. Edge computing architectures in industry 4.0: A general survey and comparison. In International Workshop on Soft Computing Models in Industrial and Environmental Applications; Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E., Eds.; Springer: Cham, Switzerland, 2020; Volume 950, pp. 121–131. [Google Scholar] [CrossRef]
- Linares-Espinós, E.; Hernández, V.; Domínguez-Escrig, J.L.; Fernández-Pello, S.; Hevia, V.; Mayor, J.; Padilla-Fernández, B.; Ribal, M.J. Methodology of a systematic review. Actas Urol. Esp. (Engl. Ed.) 2018, 42, 499–506, (In English, Spanish). [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual. Manual for VOSviewer Version 1.6.16. 25 November 2020. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.16.pdf (accessed on 13 February 2022).
- Carvalho, G.; Cabral, B.; Pereira, V.; Bernardino, J. Edge computing: Current trends, research challenges and future directions. Computing 2021, 103, 993–1023. [Google Scholar] [CrossRef]
- Horvath, I.; Gerritsen, B. Cyber-physical systems: Concepts, technologies and implementation principles. In Proceedings of the TMCE 2012, Karlsruhe, Germany, 7–11 May 2012; Horváth, I., Rusák, Z., Albers, A., Behrendt, M., Eds.; Faculty of Industrial Design Engineering, Delft University of Technology: Delft, The Netherlands, 2012; pp. 19–36. [Google Scholar]
- Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A survey on industrial Internet of Things: A cyber-physical systems perspective. IEEE Access 2018, 6, 78238–78259. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and its Role in the Internet of Things. In MCC ‘12: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, Helsinki, Finland, 17 August 2012; Gerla, M., Huang, D., Eds.; Association for Computing Machinery: New York, NY, USA, 2012; pp. 13–16. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [Google Scholar] [CrossRef]
- Elmamy, S.B.; Mrabet, H.; Gharbi, H.; Jemai, A.; Trentesaux, D.A. survey on the usage of blockchain technology for cyber-threats in the context of industry 4.0. Sustainability 2020, 12, 9179. [Google Scholar] [CrossRef]
- Hozdić, E. Smart factory for industry 4.0: A review. J. Mod. Manuf. Syst. Technol. 2015, 7, 28–35. [Google Scholar]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Siri, Siri in my Hand, who’s the Fairest in the Land? On the Interpretations, Illustrations and Implications of Artificial Intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Ławrynowicz, A.; Tresp, V. Introducing Machine Learning. In Perspectives on Ontology Learning; Lehmann, J., Voelker, J., Eds.; AKA Heidelberg/IOS Press: Amsterdam, The Netherlands, 2014; pp. 35–50. [Google Scholar] [CrossRef]
- Kozłowski, E.; Antosz, K.; Mazurkiewicz, D.; Sęp, J.; Żabiński, T. Integrating advanced measurement and signal processing for reliability decision-making. Eksploat. I Niezawodn.—Maint. Reliab. 2021, 23, 777–787. [Google Scholar] [CrossRef]
- Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.; Schukat, M.; Howley, E. Deep Reinforcement Learning: An Overview. In Proceedings of the SAI Intelligent Systems Conference (IntelliSys) 2016; Lecture Notes in Networks and Systems; Bi, Y., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2016; Volume 16. [Google Scholar] [CrossRef] [Green Version]
- Gupta, L.; Jain, R. Mobile Edge Computing—An important ingredient of 5G Networks. IEEE Softwarization Newsl. 2016. Available online: https://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-ingredient-of-5g-networks (accessed on 13 February 2022).
- Pirinen, P. A brief overview of 5G research activities. In Proceedings of the 1st International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 26–27 November 2014; Latva-aho, M., Tafazolli, R., Rajatheva, N., Correia, L.M., Rasheed, T., Eds.; ICST: Gent, Belgium, 2014; pp. 17–22. [Google Scholar] [CrossRef] [Green Version]
- Woźniczka, J. Big data i ich wykorzystanie w analityce marketingowej. Wybrane problemy badawcze. Big Data and Its Use in Marketing Analytics. Selected Research Problems. Mark. Rynek 2018, 3, 2–11. [Google Scholar]
- Trsek, H. Resource Allocation. In Isochronous Wireless Network for Real-Time Communication in Industrial Automation; Springer Vieweg: Berlin/Heidelberg, Germany, 2016; pp. 91–105. [Google Scholar] [CrossRef]
- Mahoney, J. The Management of Resources and the Resource of Management. J. Bus. Res. 1995, 33, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Rosenmüller, J.; Trockel, W. Game Theory—Optimization and Operations Research. In EOLSS; Derigs, U., Ed.; UNESCO: Paris, France, 2008; Volume 3, pp. 111–155. [Google Scholar]
- Zongyan, W. Digital Twin Technology. In Industry 4.0—Impact on Intelligent Logistics and Manufacturing; Bányai, T., Petrillo, A., De Felice, F., Eds.; IntechOpen: London, UK, 2020; pp. 95–114. [Google Scholar] [CrossRef] [Green Version]
- Pater, J.; Stadnicka, D. Towards Digital Twins Development and Implementation to Support Sustainability—Systematic Literature Review. Manag. Prod. Eng. Rev. 2021, 12, 63–73. [Google Scholar] [CrossRef]
- Mousa, M.; Bahaa-Eldin, A.M.; Sobh, M. Software Defined Networking concepts and challenges. In Proceedings of the 2016 11th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 20–21 December 2016; Abbas, H.M., El-Kharashi, M.W., El-Din, A.M.B., Taher, M., Zaki, A.M., Eds.; IEEE: Piscataway, NJ, USA, 2016; pp. 79–90. [Google Scholar] [CrossRef]
- Agrawal, S.; Agrawal, J. Survey on Anomaly Detection using Data Mining Techniques. Procedia Comput. Sci. 2015, 60, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, K. Possible Applications of Edge Computing in Industry. BSc. Diploma Thesis, Rzeszów University of Technology, Rzeszów, Poland, 2021. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-Y.; Hung, M.-H.; Lin, Y.-C.; Chen, C.-C.; Gao, W.-L.; Cheng, F.-T. A Cloud-based Pluggable Manufacturing Service Scheme for Smart Factory. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 21–23 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1040–1045. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Wu, C.-H.; Chang, S.-C. Decentralized dispatching for blocking avoidance in automate material handling systems. In Proceedings of the WSC’ 16: Winter Simulation Conference, Arlington, VA, USA, 11–14 December 2016; Roeder, T.M., Frazier, P.I., Szechtman, R., Zhou, E., Eds.; IEEE Press: Piscataway, NJ, USA, 2016; pp. 2580–2586. [Google Scholar] [CrossRef]
- Um, J.; Gezer, V.; Wagner, A.; Ruskowski, M. Edge Computing in Smart Production. In Advances in Service and Industrial Robotics—Proceedings of the 28th International Conference on Robotics in Alpe-Adria-Danube Region RAAD 2019; Karsten Berns, K., Görges, D., Eds.; Springer: Cham, Switzerland, 2020; Volume 980, pp. 144–152. [Google Scholar] [CrossRef]
- Bader, A.; Ghazzai, H.; Kadri, A.; Alouini, M.-S. Front-End Intelligence for Large-Scale Application-Oriented Internet-of-Things. IEEE Access 2016, 4, 3257–3272. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Niu, J.; Ouyang, Z.; Li, M.; Ren, T.; Li, Q. Edge Computing-based 3D Pose Estimation and Calibration for Robot Arms. In Proceedings of the 7th IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2020/6th IEEE International Conference on Edge Computing and Scalable Cloud, EdgeCom 2020, New York, NY, USA, 1–3 August 2020; pp. 246–251. [Google Scholar] [CrossRef]
- Tan, Q.; Tong, Y.; Wu, S.; Li, D. Towards a next-generation production system for industrial robots: A CPS-based hybrid architecture for smart assembly shop floors with closed-loop dynamic cyber physical interactions. Front. Mech. Eng. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; He, J.; Li, Z.; Cheng, W. A data- and knowledge-driven framework for digital twin manufacturing cell. Procedia CIRP 2019, 83, 345–350. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. IEEE Access 2019, 7, 86769–86777. [Google Scholar] [CrossRef]
- Brecher, C.; Buchsbaum, M.; Storms, S. Control from the Cloud: Edge Computing, Services and Digital Shadow for Automation Technologies. In Proceedings of the International Conference on Robotics and Automation (ICRA)-2019, Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 9327–9333. [Google Scholar] [CrossRef]
- Pan, Y.H.; Qu, T.; Wu, N.Q.; Khalgui, M.; Huang, G.Q. Digital Twin Based Real-time Production Logistics Synchronization System in a Multi-level Computing Architecture. J. Manuf. Syst. 2021, 58, 246–260. [Google Scholar] [CrossRef]
- Xu, L.-Z.; Xie, Q.-S. Dynamic Production Scheduling of Digital Twin Job-Shop Based on Edge Computing. J. Inf. Sci. Eng. 2021, 37, 93–185. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 2020, 58, 1034–1051. [Google Scholar] [CrossRef]
- Minoufekr, M.; Schug, P.; Zenker, P.; Plapper, P. Modelling of CNC Machine Tools for Augmented Reality Assistance Applications using Microsoft Hololens. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), Prague, Czech Republic, 29–31 July 2019; SCITEPRESS: Setúbal, Portugal, 2019; pp. 627–636. [Google Scholar] [CrossRef]
- Zietsch, J.; Buth, L.; Juraschek, M.; Weinert, N.; Thiede, S.; Herrmann, C. Identifying the potential of edge computing in factories through mixed reality. Procedia CIRP 2019, 81, 1095–1100. [Google Scholar] [CrossRef]
- Knecht, C.; Schuller, A.; Miclaus, A. Manageable and Scalable Manufacturing IT Through an App Based Approach. In Advances in Manufacturing, Production Management and Process Control, Proceedings of the AHFE 2019 International Conference on Human Aspects of Advanced Manufacturing, and the AHFE International Conference on Advanced Production Management and Process Control, Washington, DC, USA, 24–28 July 2019; Karwowski, W., Trzcielinski, S., Mrugalska, B., Eds.; Springer: Cham, Switzerland, 2020; Volume 971, pp. 14–26. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.M.; Liu, G.; Liu, L.; He, J.; Huang, G.Q. Toward open manufacturing: A cross-enterprises knowledge and services exchange framework based on blockchain and edge computing. Ind. Manag. Data Syst. 2018, 118, 303–320. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, S.; Liu, X.; Malekian, R.; Li, Z. A Novel Multi-Agent-Based Collaborative Virtual Manufacturing Environment Integrated with Edge Computing Technique. Energies 2019, 12, 2815. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Miao, Y.; Wu, G.; Hassan, M.M.; Humar, I. iRobot-Factory: An intelligent robot factory based on cognitive manufacturing and edge computing. Future Gener. Comput. Syst. 2019, 90, 569–577. [Google Scholar] [CrossRef]
- Lou, S.; Feng, Y.; Li, Z.; Zheng, H.; Gao, Y.; Tan, J. An Edge-Based Distributed Decision-Making Method for Product Design Scheme Evaluation. IEEE Trans. Ind. Inform. 2021, 17, 1375–1385. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, P.; Peng, T.; Yang, H.; Zou, J. Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives. Sci. China Technol. Sci. 2020, 63, 1600–1611. [Google Scholar] [CrossRef]
- Zhao, X.; Lv, K.; Zhang, Z.; Zhang, Y.; Wang, Y. A multi-fault diagnosis method of gear-box running on edge equipment. J. Cloud Comput. 2020, 9, 58. [Google Scholar] [CrossRef]
- Zhou, C.; Tham, C.-K. GraphEL: A Graph-based Ensemble Learning Method for Distributed Diagnostics and Prognostics in the Industrial Internet of Things. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems ICPADS 2018, Singapore, 11–13 December 2018; pp. 903–909. [Google Scholar] [CrossRef]
- Milic, S.D.; Miladinovic, N.M.; Rakic, A. A wayside hotbox system with fuzzy and fault detection algorithms in IIoT environment. Control. Eng. Pract. 2020, 104, 104624. [Google Scholar] [CrossRef]
- Carbone, R.; Montella, R.; Narducci, F.; Petrosino, A. DeepNautilus: A Deep Learning Based System for Nautical Engines’ Live Vibration Processing. In Proceedings of the Computer Analysis of Images and Patterns—18th International Conference, CAIP 2019, Salerno, Italy, 3–5 September 2019; Proceedings, Part II. Vento, M., Percannella, G., Eds.; Springer: Berlin, Heidelberg, 2019; pp. 120–131. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Srivastava, G.; Wu, H.T.; Chen, M.Y. Remaining useful life prediction based on state assessment using edge computing on deep learning. Comput. Commun. 2020, 160, 91–100. [Google Scholar] [CrossRef]
- Merino, R.; Bediaga, I.; Iglesias, A.; Munoa, J. Hybrid Edge–Cloud-Based Smart System for Chatter Suppression in Train Wheel Repair. Appl. Sci. 2019, 9, 4283. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Lyu, X.; Tian, H. Online Optimization of Wireless Powered Mobile-Edge Computing for Heterogeneous Industrial Internet of Things. IEEE Internet Things J. 2019, 6, 9880–9892. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Xiao, J.T.; Ren, Z.; Chen, Z.C.; Jia, Y.J. Particle Swarm Based Service Migration Scheme in the Edge Computing Environment. IEEE Access 2020, 8, 45596–45606. [Google Scholar] [CrossRef]
- Zuperl, U.; Cus, F. A Cyber-Physical System for Surface Roughness Monitoring in End-Milling. Stroj. Vestn. J. Mech. Eng. 2019, 65, 67–77. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Hu, Y.-C.; Chang, P.-Z. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module. Sensors 2018, 18, 656. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Bao, J.; Zhang, J.; Li, J.; Wang, J.; Huang, X. Real-time task processing for spinning cyber-physical production systems based on edge computing. J. Intell. Manuf. 2020, 31, 2069–2087. [Google Scholar] [CrossRef]
- Yin, S.; Bao, J.; Li, J.; Zhang, J. Real-time task processing method based on edge computing for spinning CPS. Front. Mech. Eng. 2019, 14, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Okwuibe, J.; Haavisto, J.; Harjula, E.; Ahmad, I.; Ylianttila, M. SDN Enhanced Resource Orchestration of Containerized Edge Applications for Industrial IoT. IEEE Access 2020, 8, 229117–229131. [Google Scholar] [CrossRef]
- Klein, L.; Ramachandran, M.; van Kessel, T.; Nair, D.; Hinds, N.; Hamann, H.; Sosa, N. Wireless sensor networks for fugitive methane emissions monitoring in oil and gas industry. In Proceedings of the 2018 IEEE International Congress on Internet of Things (ICIOT 2018), San Francisco, CA, USA, 2–7 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 41–48. [Google Scholar] [CrossRef]
- Tang, H.; Li, D.; Wan, J.; Imran, M.; Shoaib, M. A Reconfigurable Method for Intelligent Manufacturing Based on Industrial Cloud and Edge Intelligence. IEEE Internet Things J. 2020, 7, 4248–4259. [Google Scholar] [CrossRef]
- Vater, J.; Harscheidt, L.; Knoll, A. A reference architecture based on Edge and Cloud Computing for Smart Manufacturing. In Proceedings of the 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, July 29–August 1 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Mora-Gimeno, F.J.; Mora-Mora, H.; Marcos-Jorquera, D.; Volckaert, B. A Secure Multi-Tier Mobile Edge Computing Model for Data Processing Offloading Based on Degree of Trust. Sensors 2018, 18, 3211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Helo, P.; Gunasekaran, A. Cloud platforms for remote monitoring system: A comparative case study. Prod. Plan. Control. 2020, 31, 186–202. [Google Scholar] [CrossRef]
- Valtanen, K.; Backman, J.; Yrjola, S. Creating Value Through Blockchain Powered Resource Configurations: Analysis of 5G Network Slice Brokering Case. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 185–190. [Google Scholar] [CrossRef]
- Isaja, M.; Soldatos, J.K. Distributed Ledger Architecture for Automation, Analytics and Simulation in Industrial Environments. IFAC-PapersOnLine 2018, 51, 370–375. [Google Scholar] [CrossRef]
- Petrali, P.; Isaja, M.; Soldatos, J.K. Edge Computing and Distributed Ledger Technologies for Flexible Production Lines: A White-Appliances Industry Case. IFAC-PapersOnLine 2018, 51, 388–392. [Google Scholar] [CrossRef]
- Chen, B.; Wan, J.; Celesti, A.; Li, D.; Abbas, H.; Zhang, Q. Edge Computing in IoT-Based Manufacturing. IEEE Commun. Mag. 2018, 56, 103–109. [Google Scholar] [CrossRef]
- Bosi, I.; Rosso, J.; Ferrera, E.; Pastrone, C. IIot Platform for Agile Manufacturing in Plastic and Rubber Domain. In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security—IoTBDS, Online Streaming, 7–9 May 2020; pp. 436–444. [Google Scholar] [CrossRef]
- Um, C.; Lee, J.; Jeong, J. Industrial Device Monitoring and Control System based on oneM2M for Edge Computing. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018), Bengaluru, India, 18–21 November 2018; Sundaram, S., Ed.; IEEE: Piscataway, NJ, USA, 2018; pp. 1528–1533. [Google Scholar] [CrossRef]
- Badar, A.; Lou, D.Z.; Graf, U.; Barth, C.; Stich, C. Intelligent Edge Control with Deterministic-IP based Industrial Communication in Process Automation. In Proceedings of the 15th International Conference on Network and Service Management, Halifax, NS, Canada, 21–25 October 2019; Lutfiyya, H., Diao, Y., Zincir-Heywood, N., Badonnel, R., Madeira, E., Eds.; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Lou, P.; Liu, S.; Hu, J.; Li, R.; Xiao, Z.; Yan, J. Intelligent Machine Tool Based on Edge-Cloud Collaboration. IEEE Access 2020, 8, 139953–139965. [Google Scholar] [CrossRef]
- Lai, C.-F.; Chien, W.-C.; Yang, L.T.; Qiang, W. LSTM and Edge Computing for Big Data Feature Recognition of Industrial Electrical Equipment. IEEE Trans. Ind. Inform. 2019, 15, 2469–2477. [Google Scholar] [CrossRef]
- Chen, C.-C.; Su, W.-T.; Hung, M.-H.; Lin, Z.-H. Map-Reduce-Style Job Offloading Using Historical Manufacturing Behavior for Edge Devices in Smart Factory. IEEE Robot. Autom. Lett. 2018, 3, 2918–2925. [Google Scholar] [CrossRef]
- Stevant, B.; Pazat, J.-L.; Blanc, A. QoS-aware Autonomic Adaptation of Microservices Placement on Edge Devices. In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), Prague, Czech Republic, 7–9 May 2020; SCITEPRESS: Setúbal, Portugal, 2020; pp. 237–244. [Google Scholar] [CrossRef]
- Li, Q.; Yao, H.; Mai, T.; Jiang, C.; Zhang, Y. Reinforcement-Learning- and Belief-Learning-Based Double Auction Mechanism for Edge Computing Resource Allocation. IEEE Internet Things J. 2020, 7, 5976–5985. [Google Scholar] [CrossRef]
- Madhyastha, H.V.; Okwudire, C. Remotely Controlled Manufacturing: A New Frontier for Systems Research. In Proceedings of the 21st International Workshop on Mobile Computing Systems and Applications, Austin, TX, USA, 3 March 2020; ACM: New York, NY, USA, 2020; pp. 62–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.Y. Server-Edge dualized closed-loop data analytics system for cyber-physical system application. Robot. Comput. -Integr. Manuf. 2021, 67, 102040. [Google Scholar] [CrossRef]
- Lin, C.-C.; Deng, D.-J.; Chih, Y.-L.; Chiu, H.-T. Smart Manufacturing Scheduling with Edge Computing Using Multiclass Deep Q Network. IEEE Trans. Ind. Inform. 2019, 15, 4276–4284. [Google Scholar] [CrossRef]
- Muthanna, M.S.A.; Wang, P.; Wei, M.; Ateya, A.A.; Muthanna, A. Toward an Ultra-low Latency and Energy Efficient LoRaWAN. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; NEW2AN 2019, ruSMART 2019; Lecture Notes in Computer Science; Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y., Eds.; Springer: Cham, Switzerland, 2019; Volume 11660, pp. 233–242. [Google Scholar] [CrossRef]
- Yue, Z.; Zhu, Z.; Wang, C.; Du, W. Research on Big Data Processing Model of Edge-Cloud Collaboration in Cyber-Physical Systems. In Proceedings of the 2020 5th IEEE International Conference on Big Data Analytics (ICBDA 2020), Xiamen, China, 8–11 May 2020; pp. 140–144. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Han, X.; Zhao, C.; Zhang, D.; Zhu, K.; Su, Y. A Light-Weighted CNN Model for Wafer Structural Defect Detection. IEEE Access 2020, 8, 24006–24018. [Google Scholar] [CrossRef]
- Hou, D.; Liu, T.; Pan, Y.; Hou, J. AI on edge device for laser chip defect detection. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC 2019), Las Vegas, NV, USA, 7–9 January 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Warner, J.; Orgeron, K. Decentralized network for next generation sensor integration and edge computing. In Proceedings of the 2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2019), Saratoga Springs, New York, NY, USA, 6–9 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Trinks, S.; Felden, C. Image Mining for Real Time Fault Detection within the Smart Factory. In Proceedings of the 2019 IEEE 21st Conference on Business Informatics (CBI), Moscow, Russia, 15–17 July 2019; Becker, J., Novikov, D., Eds.; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 584–593. [Google Scholar] [CrossRef]
- Lim, J.; Lee, H.; Won, Y.; Yeon, H. MLOp Lifecycle Scheme for Vision-based Inspection Process in Manufacturing. In Proceedings of the 2019 USENIX Conference on Operational Machine Learning, OpML 2019, Santa Clara, CA, USA, 20 May 2019; USENIX Association: Berkeley, CA, USA, 2019; pp. 9–11. [Google Scholar]
- Zhu, Z.; Han, G.; Jia, G.; Shu, L. Modified DenseNet for Automatic Fabric Defect Detection With Edge Computing for Minimizing Latency. IEEE Internet Things J. 2020, 7, 9623–9636. [Google Scholar] [CrossRef]
- Bai, X.; Tan, J.; Wang, X.; Wang, L.; Liu, C.; Shi, L.; Sun, W. Study on distributed lithium-ion power battery grouping scheme for efficiency and consistency improvement. J. Clean. Prod. 2019, 233, 429–445. [Google Scholar] [CrossRef]
- Zörrer, H.; Steringer, R.; Zambal, S.; Eitzinger, C. Using Business Analytics for Decision Support in Zero Defect Manufacturing of Composite Parts in the Aerospace Industry. IFAC-PapersOnLine 2019, 52, 1461–1466. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, K.; Zou, J.; Peng, T.; Yang, H. A CNN-Based Visual Sorting System with Cloud-Edge Computing for Flexible Manufacturing Systems. IEEE Trans. Ind. Inform. 2020, 16, 4726–4735. [Google Scholar] [CrossRef]
- Ndikumana, A.; Ullah, S.; LeAnh, T.; Tran, N.H.; Hong, C.S. Collaborative Cache Allocation and Computation Offloading in Mobile Edge Computing. In Proceedings of the 19th Asia-Pacific Network Operations and Management Symposium, APNOMS 2017, Seoul, Korea, 27–29 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 366–369. [Google Scholar] [CrossRef]
- Na, W.; Lee, Y.; Dao, N.-N.; Vu, D.N.; Masood, A.; Cho, S. Directional Link Scheduling for Real-Time Data Processing in Smart Manufacturing System. IEEE Internet Things J. 2018, 5, 3661–3671. [Google Scholar] [CrossRef]
- Raileanu, S.; Borangiu, T.; Morariu, O.; Iacob, I. Edge Computing in Industrial IoT Framework for Cloud-based Manufacturing Control. In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, România, 10–12 October 2018; Barbu, M., Şolea, R., Filipescu, A., Eds.; IEEE: Piscataway, NJ, USA, 2018; pp. 261–266. [Google Scholar] [CrossRef]
- Sakai, O.; Kitagawa, T.; Sakurai, K.; Itami, G.; Miyagi, S.; Noborio, K.; Taguchi, K. In-vacuum active colour sensor and wireless communication across a vacuum-air interface. Sci. Rep. 2021, 11, 1364. [Google Scholar] [CrossRef]
- Janjua, Z.H.; Vecchio, M.; Antonini, M.; Antonelli, F. IRESE: An intelligent rare-event detection system using unsupervised learning on the IoT edge. Eng. Appl. Artif. Intell. 2019, 84, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Bellavista, P.; Della Penna, R.; Foschini, L.; Scotece, D. Machine Learning for Predictive Diagnostics at the Edge: An IIoT Practical Example. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Yu, W.; Liang, F.; Griffith, D.; Golmie, N. On deep reinforcement learning security for Industrial Internet of Things. Comput. Commun. 2021, 168, 20–32. [Google Scholar] [CrossRef]
- Derhamy, H.; Eliasson, J.; Delsing, J. System of System Composition Based on Decentralized Service-Oriented Architecture. IEEE Syst. J. 2019, 13, 3675–3686. [Google Scholar] [CrossRef] [Green Version]
- Giehl, A.; Schneider, P.; Busch, M.; Schnoes, F.; Kleinwort, R.; Zaeh, M.F. Edge-computing enhanced privacy protection for industrial ecosystems in the context of SMEs. In Proceedings of the 2019 12th CMI Conference on Cybersecurity and Privacy (CMI), Copenhagen, Denmark, 28–29 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Libri, A.; Bartolini, A.; Benini, L. pAElla: Edge AI-Based Real-Time Malware Detection in Data Centers. IEEE Internet Things J. 2020, 7, 9589–9599. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Yang, R.; Shi, C.; Zhang, X. Research on Security Protection Technology System of Power internet of things. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC 2019), Chongqing, China, 24–26 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1772–1776. [Google Scholar] [CrossRef]
- See, J.-C.; Mok, K.-M.; Lee, W.-K.; Goh, H.-G. RISC32-E: Field programmable gate array based sensor node with queue system to support fast encryption in Industrial Internet of Things applications. Int. J. Circ. Theor. Appl. 2020, 48, 1209–1226. [Google Scholar] [CrossRef]
- Gomez, A.L.P.; Maimo, L.F.; Celdran, A.H.; Clemente, F.J.G.; Perez, M.G.; Perez, G.M. SafeMan: A unified framework to manage cybersecurity and safety in manufacturing industry. Softw Pract. Exper. 2021, 51, 607–627. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Li, H.; Li, Y.; Tian, A. Toward Data Security in Edge Intelligent IIoT. IEEE Netw. 2019, 33, 20–26. [Google Scholar] [CrossRef]
- Shao, M.; Liu, J.; Yang, Q.; Simon, G. A Learning Based Framework for MEC Server Planning with Uncertain BSs Demands. IEEE Access 2020, 8, 198832–198844. [Google Scholar] [CrossRef]
- Wang, W.; Fan, L.; Huang, P.; Li, H. A New Data Processing Architecture for Multi-Scenario Applications in Aviation Manufacturing. IEEE Access 2019, 7, 83637–83650. [Google Scholar] [CrossRef]
- Najdataei, H.; Subramaniyan, M.; Gulisano, V.; Skoogh, A.; Papatriantafilou, M. Adaptive Stream-based Shifting Bottleneck Detection in IoT-based Computing Architectures. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 993–1000. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Li, H.; Yang, Y.; Sharma, P.K.; Wang, J.; Singh, S. Complexity and Algorithms for Superposed Data Uploading Problem in Networks With Smart Devices. IEEE Internet Things J. 2020, 7, 5882–5891. [Google Scholar] [CrossRef]
- Al Sunny, S.M.N.; Liu, X.; Shahriar, M.R. Development and optimization of an MTConnect based edge computing node for remote monitoring in cyber manufacturing systems. In Proceedings of the 2020 IEEE International Conference on Fog Computing (ICFC), Sydney, Australia, 21–24 April 2020; IEEE: Piscataway, NJ, USA, 2019; pp. 38–43. [Google Scholar] [CrossRef]
- Gai, K.; Xu, K.; Lu, Z.; Qiu, M.; Zhu, L. Fusion of Cognitive Wireless Networks and Edge Computing. IEEE Wirel. Commun. 2019, 26, 69–75. [Google Scholar] [CrossRef]
- Si, P.B.; Liang, H.Q.; Wu, W.J.; Zhang, Y.H. Joint Resource Management in Cognitive Radio and Edge Computing Based Industrial Wireless Networks. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Gand, F.; Fronza, I.; El Ioini, N.; Barzegar, H.R.; Pahl, C. Serverless Container Cluster Management for Lightweight Edge Clouds. In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), Prague, Czech Republic, 7–9 May 2020; SCITEPRESS: Setúbal, Portugal, 2020; pp. 302–311. [Google Scholar] [CrossRef]
- Xu, F.; Ye, H.; Cui, S.; Zhao, C.; Yao, H. Software Defined Industrial Network: Architecture and Edge Offloading Strategy. In Communications and Networking, Proceedings of the ChinaCom 2018, Chengdu, China, 23–25 October 2018; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Liu, X., Cheng, D., Lai, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 262, pp. 46–56. [Google Scholar] [CrossRef]
- Zhou, H.; Xiang, Y.; Li, H.-F.; Yuan, R. Task Offloading Strategy of 6G Heterogeneous Edge-Cloud Computing Model considering Mass Customization Mode Collaborative Manufacturing Environment. Math. Probl. Eng. 2020, 2020, 1059524. [Google Scholar] [CrossRef]
- Quoc, H.D.; The, L.N.; Doan, C.N.; Xiong, N. Effective Evolutionary Algorithm for Solving the Real-Resource-Constrained Scheduling Problem. J. Adv. Transp. 2020, 2020, 8897710. [Google Scholar] [CrossRef]
- Yang, J.; Qian, T.; Zhang, F.; Khan, S.U. Real-Time Facial Fixpression Recognition Based On Edge Computing. IEEE Access 2021, 9, 76178–76190. [Google Scholar] [CrossRef]
- Abeykoon, V.; Liu, Z.; Kettimuthu, R.; Fox, G.; Foster, I. Scientific Image Restoration Anywhere. In Proceedings of the 2019 IEEE/ACM 1st Annual Workshop on Large-scale Experiment-in-the-Loop Computing (XLOOP 2019), Denver, CO, USA, 18 November 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 8–13. [Google Scholar] [CrossRef] [Green Version]
- Janbi, N.; Katib, I.; Albeshri, A.; Mehmood, R. Distributed Artificial Intelligence-as-a-Service (DAIaaS) for Smarter IoE and 6G Environments. Sensors 2020, 20, 5796. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, D.; Hu, Y. Fog Nodes Deployment Based on Space-Time Characteristics in Smart Factory. IEEE Trans. Ind. Inform. 2021, 17, 3534–3543. [Google Scholar] [CrossRef]
- Oliveira, D.R.C.; Neto, N.V.D.; Goncalves, M.A.; Silva, F.D.; Rosa, P.F. Network Self-configuration for Edge Elements using Self-Organizing Networks Architecture (SONAr). In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), Prague, Czech Republic, 7–9 May 2020; SCITEPRESS: Setúbal, Portugal, 2020; pp. 408–414. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, W. Edge Computing Enabled Production Anomalies Detection and Energy-Efficient Production Decision Approach for Discrete Manufacturing Workshops. IEEE Access 2020, 8, 158197–158207. [Google Scholar] [CrossRef]
- Kim, D.; Yang, H.; Chung, M.; Cho, S.; Kim, H.; Kim, M.; Kim, K.; Kim, E. Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things. In Proceedings of the 2018 International Conference on Information and Computer Technologies (ICICT 2018), DeKalb, IL, USA, 23–25 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 67–71. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ding, S.; Zhao, L.; Huang, H.; Chen, L.; Gao, H.; Ahmed, S.H. Real-Time Fault Detection for IIoT Facilities Using GBRBM-Based DNN. IEEE Internet Things J. 2020, 7, 5713–5722. [Google Scholar] [CrossRef]
- Li, X.; Wan, J.; Dai, H.-N.; Imran, M.; Xia, M.; Celesti, A. A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 4225–4234. [Google Scholar] [CrossRef]
- Tang, C.; Wei, X.; Xiao, S.; Chen, W.; Fang, W.; Zhang, W.; Hao, M. A Mobile Cloud Based Scheduling Strategy for Industrial Internet of Things. IEEE Access 2018, 6, 7262–7275. [Google Scholar] [CrossRef]
- Jiang, C.; Wan, J. A Thing-Edge-Cloud Collaborative Computing Decision-Making Method for Personalized Customization Production. IEEE Access 2021, 9, 10962–10973. [Google Scholar] [CrossRef]
- Anton, F.; Borangiu, T.; Morariu, O.; Raileanu, S.; Anton, S.; Ivanescu, N. Decentralizing Cloud Robot Services Through Edge Computing. In Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science; Aspragathos, N.A., Koustoumpardis, P.N., Moulianitis, V.C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 67, pp. 618–626. [Google Scholar] [CrossRef]
- Katenbrink, F.; Seitz, A.; Mittermeier, L.; Mueller, H.; Bruegge, B. Dynamic Scheduling for Seamless Computing. In Proceedings of the 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2), Paris, France, 19–22 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 41–48. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Ren, S.; Wang, C.; Wang, W. Evolutionary game based real-time scheduling for energy-efficient distributed and flexible job shop. J. Clean. Prod. 2021, 293, 126093. [Google Scholar] [CrossRef]
- Feng, Y.; Hong, Z.; Li, Z.; Zheng, H.; Tan, J. Integrated intelligent green scheduling of sustainable flexible workshop with edge computing considering uncertain machine state. J. Clean. Prod. 2020, 246, 119070. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, P.; Shen, L.; Zhang, M.; Huang, G. IoT edge computing-enabled collaborative tracking system for manufacturing resources in industrial park. Adv. Eng. Inform. 2020, 43, 101044. [Google Scholar] [CrossRef]
- Tan, Q.; Tong, Y.; Wu, S.; Li, D. Modeling, planning, and scheduling of shop-floor assembly process with dynamic cyber-physical interactions: A case study for CPS-based smart industrial robot production. Int. J. Adv. Manuf. Technol. 2019, 105, 3979–3989. [Google Scholar] [CrossRef]
- Dao, N.-N.; Vu, D.-N.; Lee, Y.; Cho, S.; Cho, C.; Kim, H. Pattern-Identified Online Task Scheduling in Multitier Edge Computing for Industrial IoT Services. Mob. Inf. Syst. 2018, 2018, 2101206. [Google Scholar] [CrossRef] [Green Version]
- Katti, B.; Plociennik, C.; Schweitzer, M. SemOPC-UA: Introducing Semantics to OPC-UA Application Specific Methods. IFAC-PapersOnLine 2018, 51, 1230–1236. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, H.; Liu, C.C.; E, M.C.; Jiang, Z.Q.; Wang, Q. Study on Edge-Cloud Collaborative Production Scheduling Based on Enterprises With Multi-Factory. IEEE Access 2020, 8, 30069–30080. [Google Scholar] [CrossRef]
- Bujari, A.; Ronzani, D.; Palazzi, C.E. A Simulation Analysis of an Autonomous Production Site. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 830–834. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, W.; Zhu, G.; You, Y.; Deng, F.; Hou, Y.; Liang, W.; Fu, R.; Xin, J.; Chen, J.; et al. Collaborative Robot Transport System Based on Edge Computing. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1320–1326. [Google Scholar] [CrossRef]
- Lambrecht, J.; Funk, E. Edge-Enabled Autonomous Navigation and Computer Vision as a Service: A Study on Mobile Robot’s Onboard Energy Consumption and Computing Requirements. In Proceedings of the Robot 2019: Fourth Iberian Robotics Conference, Porto, Portugal, 20–22 November 2019; Advances in Intelligent Systems and Computing. Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D., Eds.; Springer: Cham, Switzerland, 2019; Volume 1093, pp. 291–302. [Google Scholar] [CrossRef]
- Melo, A.G.; Pinto, M.F.; Marcato, A.L.M.; Honório, L.M.; Coelho, F.O. Dynamic Optimization and Heuristics Based Online Coverage Path Planning in 3D Environment for UAVs. Sensors 2021, 21, 1108. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, C.; Yi, X.; Li, L.; Zeng, H. Joint Connection Modes, Uplink Paths and Computational Tasks Assignment for Unmanned Mining Vehicles’ Energy Saving in Mobile Edge Computing Networks. IEEE Access 2020, 8, 142076–142085. [Google Scholar] [CrossRef]
- Tang, J.; Liu, S.; Liu, L.; Yu, B.; Shi, W. LoPECS: A Low-Power Edge Computing System for Real-Time Autonomous Driving Services. IEEE Access 2020, 8, 30467–30479. [Google Scholar] [CrossRef]
- Klaas, T.; Lambrecht, J.; Funk, E. Semantic Local Planning for Mobile Robots through Path Optimization Services on the Edge: A Scenario-based Evaluation. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2020), Vienna, Austria, 8–11 September 2020; IEEE: Piscataway, NJ, USA, 2021; pp. 711–718. [Google Scholar] [CrossRef]
- Datta, S.K.; Bonnet, C. MEC and IoT Based Automatic Agent Reconfiguration in Industry 4.0. In Proceedings of the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Indore, India, 16–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Pallasch, C.; Hoffmann, N.; Storms, S.; Herfs, W. ProducTron: Towards Flexible Distributed and Networked Production. In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 287–292. [Google Scholar] [CrossRef]
- Dobrescu, R.; Mocanu, S.; Chenaru, O.; Nicolae, M.; Florea, G. Versatile edge gateway for improving manufacturing supply chain management via collaborative networks. Int. J. Comput. Integr. Manuf. 2020, 34, 407–421. [Google Scholar] [CrossRef]
- Nain, G.; Pattanaik, K.K.; Sharma, G.K. Towards edge computing in intelligent manufacturing: Past, present and future. J. Manuf. Syst. 2022, 62, 588–611. [Google Scholar] [CrossRef]
- Ahmed, E.; Ahmed, A.; Yaqoob, I.; Shuja, J.; Gani, A.; Imran, M.; Shoaib, M. Bringing Computation Closer toward the User Network: Is Edge Computing the Solution? IEEE Commun. Mag. 2017, 55, 138–144. [Google Scholar] [CrossRef]
Keywords Combination | Web of Science | IEEE Xplore | Scopus | Total |
---|---|---|---|---|
“edge computing” AND “manufacturing” | 146 | 259 | 254 | 659 |
“edge computing” AND “production” | 162 | 328 | 281 | 771 |
“edge computing” AND “quality control” | 6 | 8 | 90 | 104 |
“edge computing” AND “machining” | 13 | 85 | 16 | 114 |
Keyword | Occurrences | Total Link Strength | Keyword | Occurrences | Total Link Strength |
---|---|---|---|---|---|
edge computing | 346 | 397 | resource allocation | 18 | 33 |
fog computing | 97 | 186 | big data | 14 | 31 |
cloud computing | 76 | 166 | computation offloading | 18 | 29 |
Internet of Things | 75 | 146 | cyber-physical systems | 15 | 28 |
Industry 4.0 | 60 | 129 | Industrial IoT | 10 | 27 |
IoT | 47 | 91 | security | 14 | 27 |
blockchain | 36 | 72 | Industrial Internet of Things (IIoT) | 22 | 26 |
smart factory | 23 | 56 | resource management | 12 | 26 |
smart manufacturing | 24 | 52 | game theory | 12 | 25 |
Internet of Things (IoT) | 31 | 50 | digital twin | 12 | 21 |
machine learning | 21 | 45 | energy efficiency | 11 | 21 |
IIoT | 16 | 43 | SDN | 14 | 21 |
mobile edge computing | 37 | 41 | latency | 10 | 20 |
deep learning | 23 | 40 | anomaly detection | 11 | 16 |
Industrial Internet of Things | 25 | 40 | deep reinforcement learning | 11 | 15 |
5G | 23 | 35 | mec | 16 | 14 |
artificial intelligence | 20 | 35 | mobile edge computing (mec) | 17 | 10 |
Synonyms | Valid Name | Synonyms | Valid Name |
---|---|---|---|
Industrial Internet of Things (IIoT) Industrial Internet of Things; IIot Industrial IoT Industrial IoT (IIoT) Industrial Internet of Things (IIoTs) Industry IoT | Industrial Internet of Things | Internet of Things Internet of Things (IoT); IoT Internet of Things (IoT) | Internet of Things |
Mobile edge computing; MEC Mobile edge computing (MEC) Mobile-edge computing (MEC) | Mobile edge computing |
Keyword | Occurrences | Total Link Strength | Keyword | Occurrences | Total Link Strength |
---|---|---|---|---|---|
edge computing | 346 | 397 | resource allocation | 18 | 33 |
Internet of Things | 144 | 258 | big data | 14 | 30 |
fog computing | 97 | 180 | computation offloading | 18 | 30 |
cloud computing | 76 | 163 | cyber-physical systems | 15 | 28 |
Industrial Internet of Things | 78 | 139 | security | 14 | 28 |
Industry 4.0 | 60 | 127 | resource management | 12 | 27 |
blockchain | 36 | 74 | game theory | 12 | 26 |
mobile edge computing | 73 | 74 | digital twin | 12 | 21 |
smart factory | 23 | 56 | latency | 10 | 21 |
smart manufacturing | 24 | 52 | SDN | 14 | 20 |
machine learning | 21 | 44 | energy efficiency | 11 | 21 |
deep learning | 23 | 40 | anomaly detection | 11 | 16 |
artificial intelligence | 20 | 35 | deep reinforcement learning | 11 | 15 |
5G | 23 | 34 |
Term | All Databases | WoS | IEEE Explorer | SCOPUS | ||||
---|---|---|---|---|---|---|---|---|
Weight | Relative Weight | Weight | Relative Weight | Weight | Relative Weight | Weight | Relative Weight | |
latency | 10 | 2.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
anomaly detection | 11 | 3.2 | 6 | 4.3 | 0 | 0.0 | 0 | 0.0 |
deep reinforcement learning | 11 | 3.2 | 0 | 0.0 | 7 | 3.9 | 0 | 0.0 |
energy efficiency | 11 | 3.2 | 0 | 0.0 | 8 | 4.4 | 0 | 0.0 |
digital twin | 12 | 3.5 | 7 | 5.1 | 0 | 0.0 | 9 | 4.1 |
game theory | 12 | 3.5 | 0 | 0.0 | 9 | 5.0 | 0 | 0.0 |
resource management | 12 | 3.5 | 0 | 0.0 | 9 | 5.0 | 0 | 0.0 |
big data | 14 | 4.0 | 4 | 2.9 | 10 | 5.6 | 7 | 3.2 |
SDN | 14 | 4.0 | 0 | 0.0 | 8 | 4.4 | 6 | 2.8 |
security | 14 | 4.0 | 0 | 0.0 | 11 | 6.1 | 0 | 0.0 |
cyber-physical systems | 15 | 4.3 | 5 | 3.6 | 7 | 3.9 | 10 | 4.6 |
computation offloading | 18 | 5.2 | 0 | 0.0 | 15 | 8.3 | 6 | 2.8 |
resource allocation | 18 | 5.2 | 0 | 0.0 | 14 | 7.8 | 6 | 2.8 |
artificial intelligence | 20 | 5.8 | 5 | 3.6 | 9 | 5.0 | 14 | 6.4 |
machine learning | 21 | 6.1 | 11 | 8.0 | 14 | 7.8 | 18 | 8.3 |
5G | 23 | 6.6 | 7 | 5.1 | 10 | 5.6 | 14 | 6.4 |
deep learning | 23 | 6.6 | 8 | 5.8 | 14 | 7.8 | 12 | 5.5 |
smart factory | 23 | 6.6 | 11 | 8.0 | 13 | 7.2 | 13 | 6.0 |
smart manufacturing | 24 | 6.9 | 13 | 9.4 | 13 | 7.2 | 19 | 8.7 |
blockchain | 36 | 10.4 | 10 | 7.2 | 23 | 12.8 | 15 | 6.9 |
Industry 4.0 | 60 | 17.3 | 17 | 12.3 | 38 | 21.1 | 33 | 15.1 |
mobile edge computing | 73 | 21.1 | 12 | 8.7 | 50 | 27.8 | 31 | 14.2 |
cloud computing | 76 | 22.0 | 20 | 14.5 | 45 | 25.0 | 38 | 17.4 |
Industrial Internet of Things | 78 | 22.5 | 26 | 18.8 | 57 | 31.7 | 34 | 15.6 |
fog computing | 97 | 28.0 | 25 | 18.1 | 70 | 38.9 | 37 | 17.0 |
Internet of Things | 144 | 41.6 | 47 | 34.1 | 79 | 43.9 | 91 | 41.7 |
edge computing | 346 | 100.0 | 138 | 100.0 | 180 | 100.0 | 218 | 100.0 |
Term | All Databases | WoS | IEEE Explorer | SCOPUS | ||||
---|---|---|---|---|---|---|---|---|
Link Strength | Relative Link Strength | Link Strength | Relative Link Strength | Link Strength | Relative Link Strength | Link Strength | Relative Link Strength | |
energy efficiency | 2 | 2.5 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
mobile edge computing | 2 | 2.5 | 1 | 2.6 | 1 | 2.6 | 1 | 1.8 |
latency | 3 | 3.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
SDN | 3 | 3.8 | 0 | 0.0 | 3 | 7.9 | 1 | 1.8 |
computation offloading | 4 | 5.0 | 0 | 0.0 | 3 | 7.9 | 3 | 5.4 |
resource management | 4 | 5.0 | 0 | 0.0 | 2 | 5.3 | 0 | 0.0 |
security | 4 | 5.0 | 0 | 0.0 | 3 | 7.9 | 0 | 0.0 |
5G | 5 | 6.3 | 3 | 7.9 | 2 | 5.3 | 3 | 5.4 |
anomaly detection | 5 | 6.3 | 1 | 2.6 | 0 | 0.0 | 0 | 0.0 |
deep reinforcement learning | 5 | 6.3 | 0 | 0.0 | 2 | 5.3 | 0 | 0.0 |
game theory | 5 | 6.3 | 0 | 0.0 | 4 | 10.5 | 0 | 0.0 |
big data | 7 | 8.8 | 3 | 7.9 | 5 | 13.2 | 5 | 8.9 |
resource allocation | 7 | 8.8 | 0 | 0.0 | 4 | 10.5 | 4 | 7.1 |
digital twin | 8 | 10.0 | 4 | 10.5 | 0 | 0.0 | 7 | 12.5 |
cyber-physical systems | 9 | 11.3 | 3 | 7.9 | 4 | 10.5 | 5 | 8.9 |
deep learning | 10 | 12.5 | 3 | 7.9 | 6 | 15.8 | 5 | 8.9 |
machine learning | 10 | 12.5 | 5 | 13.2 | 6 | 15.8 | 9 | 16.1 |
artificial intelligence | 13 | 16.3 | 3 | 7.9 | 6 | 15.8 | 9 | 16.1 |
smart factory | 16 | 20.0 | 9 | 23.7 | 8 | 21.1 | 9 | 16.1 |
blockchain | 21 | 26.3 | 8 | 21.1 | 12 | 31.6 | 12 | 21.4 |
smart manufacturing | 21 | 26.3 | 12 | 31.6 | 11 | 28.9 | 18 | 32.1 |
Industry 4.0 | 30 | 37.5 | 10 | 26.3 | 16 | 42.1 | 18 | 32.1 |
fog computing | 37 | 46.3 | 17 | 44.7 | 18 | 47.4 | 23 | 41.1 |
Industrial Internet of Things | 40 | 50.0 | 19 | 50.0 | 25 | 65.8 | 22 | 39.3 |
cloud computing | 46 | 57.5 | 17 | 44.7 | 19 | 50.0 | 31 | 55.4 |
Internet of Things | 80 | 100.0 | 38 | 100.0 | 38 | 100.0 | 56 | 100.0 |
Industrial Application | Source | Technologies |
---|---|---|
Machine-to-machine communication | [48,49] | Cloud computing, discrete-event simulation |
Human–machine interaction | [50] | CPS |
Front-end IoT devices | [51] | Fog computing |
Robot calibration, dynamic reorganization, and reconfiguration of the assembly line | [52,53] | Deep learning |
Creation of a digital twin, adaptive production, Digital Shadow | [54,55,56,57,58,59] | Data mining, dynamic knowledge bases, cloud and fog computing |
CNC machining machine simulation | [60] | AR, CPS, HoloLens |
Discovery of data-driven solutions, efficiency and flexibility of IT systems, IT system development | [61,62] | Mixed Reality |
Sharing knowledge and services in production ecosystems | [63] | Blockchain |
Improvement of the efficiency of production process | [64,65] | ML, AI, emotion interaction |
Product design evaluation, AM-based product development process | [66,67] | Cloud computing, AI |
Product damage diagnostics, diagnostics and prognostics in industrial applications | [68,69] | Deep learning, distributed ensemble learning |
Diagnostics of machine part damage | [70,71] | Deep neural network, |
Assessment of the condition of working aircraft engines and predicting remaining service life of components | [72] | deep learning |
Monitoring and damping of spindle vibration | [73] | Cloud computing |
Reduction of energy consumption, planning of energy resources, minimizing delays and power consumption | [64,74,75] | AI, Mobile edge computing, particle swarm optimization |
Real-time data processing, real-time industrial automation monitoring, real-time surface roughness monitoring, monitoring and damping of spindle vibration, analysis of the thermal characteristics of machine tool spindles | [73,76,77,78,79,80,81] | CPS, cloud computing, 5G, programmable computer network (SDN) |
Intelligent manufacturing, production automation, CPS, increasing efficiency, automation, remote operation and monitoring, remotely controlled manufacturing, edge-cloud cooperation, optimizing response time of microservice-based applications, intelligent and flexible manufacturing | [82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102] | Cloud computing, data analytics, blockchain, CPS, AI, deep learning, reinforcement learning, particle swarm optimization, mobile edge computing, fog computing, SDN |
Visual inspection of products, image edge detection and defect detection, identification and classification of defects, decision support system for product quality control, virtual metrology system, reducing inspection cycle time, quality assurance | [103,104,105,106,107,108,109,110] | ML, cloud computing, convolutional neural network, fog computing, deep learning, image mining |
Visual system for product sorting | [111] | Convolutional neural networks, cloud computing |
Data acquisition and management, data transfer, data control automation, and security improvement | [112,113,114,115,116,117,118,119] | Fog computing, ML, mobile edge computing, 5G, deep and inverse reinforcement learning |
Improving data security, real-time security monitoring, shortening data processing time, reducing energy consumption, anomaly detection, intelligent networks, cyber attack prevention | [120,121,122,123,124,125] | Programmable gate array, AI, big data, cloud computing, ML, deep learning |
Energy consumption of uploading data, computing energy waste, efficient data processing, big data real-time feedback, real-world datasets, industrial network, industrial wireless network | [126,127,128,129,130,131,132,133,134,135] | Reinforcement learning, mobile edge-cloud computing, SDN, mobile edge computing |
Allocation of resources and machines | [136] | Evolutionary algorithm |
Recognition of facial expressions, image restoration | [137,138] | Facial recognition, deep learning |
Discovery of edge networks, distributed AI as a service, self-configuration of the network | [139,140,141] | AI, fog computing, 5G, SDN, cloud computing |
Detection of production anomalies, anomaly detection in time series data for edge computing, real-time fault detection | [142,143,144] | Convolutional neural networks, neural networks, deep learning |
Online job scheduling for networks, infrastructure, dynamic and green scheduling, planning and scheduling of process and resources allocation and utilization, real-time scheduling, task sorting by priority and decision making customized production, cloud MES | [145,146,147,148,149,150,151,152,153,154,155,156] | Neural networks, fog computing, AI, mobile cloud computing, reinforcement learning, cloud computing |
Collaboration of heterogeneous robots, autonomous vehicle, and autonomous mobile robots, machine–cloud communication, autonomous navigation | [157,158,159,160,161,162,163,164] | Cloud, mobile edge and fog-edge computing |
Flexible distributed networked production, streamlining supply chain management | [165,166] | Cloud computing |
Term | Relative Link Strength Differences | ||
---|---|---|---|
Δ WOS | Δ IEEE Xplore | Δ SCOPUS | |
energy efficiency | −2.5 | −2.5 | −2.5 |
mobile edge computing | 0.1 | 0.1 | −0.7 |
latency | −3.8 | −3.8 | −3.8 |
SDN | −3.8 | 4.1 | −2.0 |
computation offloading | −5.0 | 2.9 | 0.4 |
resource management | −5.0 | 0.3 | −5.0 |
security | −5.0 | 2.9 | −5.0 |
5G | 1.6 | −1.0 | −0.9 |
anomaly detection | −3.6 | −6.3 | −6.3 |
deep reinforcement learning | −6.3 | −1.0 | −6.3 |
game theory | −6.3 | 4.3 | −6.3 |
big data | −0.9 | 4.4 | 0.2 |
resource allocation | −8.8 | 1.8 | −1.6 |
digital twin | 0.5 | −10.0 | 2.5 |
cyber-physical systems | −3.4 | −0.7 | −2.3 |
deep learning | −4.6 | 3.3 | −3.6 |
machine learning | 0.7 | 3.3 | 3.6 |
artificial intelligence | −8.4 | −0.5 | −0.2 |
smart factory | 3.7 | 1.1 | −3.9 |
blockchain | −5.2 | 5.3 | −4.8 |
smart manufacturing | 5.3 | 2.7 | 5.9 |
Industry 4.0 | −11.2 | 4.6 | −5.4 |
fog computing | −1.5 | 1.1 | −5.2 |
Industrial Internet of Things | 0.0 | 15.8 | −10.7 |
cloud computing | −12.8 | −7.5 | −2.1 |
Internet of Things | 0.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, K.; Dec, G.; Stadnicka, D. Possible Applications of Edge Computing in the Manufacturing Industry—Systematic Literature Review. Sensors 2022, 22, 2445. https://doi.org/10.3390/s22072445
Kubiak K, Dec G, Stadnicka D. Possible Applications of Edge Computing in the Manufacturing Industry—Systematic Literature Review. Sensors. 2022; 22(7):2445. https://doi.org/10.3390/s22072445
Chicago/Turabian StyleKubiak, Kacper, Grzegorz Dec, and Dorota Stadnicka. 2022. "Possible Applications of Edge Computing in the Manufacturing Industry—Systematic Literature Review" Sensors 22, no. 7: 2445. https://doi.org/10.3390/s22072445
APA StyleKubiak, K., Dec, G., & Stadnicka, D. (2022). Possible Applications of Edge Computing in the Manufacturing Industry—Systematic Literature Review. Sensors, 22(7), 2445. https://doi.org/10.3390/s22072445