Influence of Electroporation Medium on Delivery of Cell-Impermeable Small Molecules by Electrical Short-Circuiting via an Aqueous Droplet in Dielectric Oil: A Comparison of Different Fluorescent Tracers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Electroporation
2.3. Electroporation Media
2.4. Measurement of Intracellular Calcium Ion
2.5. YO-PRO-1 Uptake Assay
2.6. Measurement of the Loss of Intracellular Molecules
2.7. The Effect of Endocytosis Inhibition on YO-PRO-1 Uptake
2.8. Flow Cytometry
3. Results
3.1. Measurement of Intracellular Calcium Ion
3.2. YO-PRO-1 Uptake Assay
3.3. Measurement of the Loss of Intracellular Molecules
3.4. The Effect of Endocytosis Inhibition on YO-PRO-1 Uptake
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982, 1, 841–845. [Google Scholar] [CrossRef]
- Gehl, J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 2003, 177, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Yarmush, M.L.; Golberg, A.; Sersa, G.; Kotnik, T.; Miklavcic, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.P.; Langer, R.; Jensen, K.F. Intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts. Chem. Rev. 2018, 118, 7409–7531. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ma, Y.; Zhu, J.; Chen, Y.; Sun, Y.; Yao, Y.; Yang, Z.; Xie, J. A Review on electroporation-based intracellular delivery. Molecules 2018, 23, 3044. [Google Scholar] [CrossRef] [Green Version]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavcic, D. Membrane electroporation and electropermeabilization: Mechanisms and models. Annu. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef]
- Batista Napotnik, T.; Polajzer, T.; Miklavcic, D. Cell death due to electroporation—A review. Bioelectrochemistry 2021, 141, 107871. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.A.; Wang, J.; Xia, D.F.; Meng, X.; Paschon, D.E.; Leung, E.; Hinkley, S.J.; et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1911. [Google Scholar] [CrossRef] [PubMed]
- Pickar-Oliver, A.; Gersbach, C.A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef]
- Doudna, J.A. The promise and challenge of therapeutic genome editing. Nature 2020, 578, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Katti, A.; Diaz, B.J.; Caragine, C.M.; Sanjana, N.E.; Dow, L.E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 2022. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 2016, 17, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S. Pluripotent stem cell-based cell therapy-Promise and challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef]
- Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Durymanov, M.; Reineke, J. Non-viral delivery of nucleic acids: Insight into mechanisms of overcoming intracellular barriers. Front. Pharmacol. 2018, 9, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayed, N.; Allawadhi, P.; Khurana, A.; Singh, V.; Navik, U.; Pasumarthi, S.K.; Khurana, I.; Banothu, A.K.; Weiskirchen, R.; Bharani, K.K. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022, 294, 120375. [Google Scholar] [CrossRef] [PubMed]
- Campana, L.G.; Edhemovic, I.; Soden, D.; Perrone, A.M.; Scarpa, M.; Campanacci, L.; Cemazar, M.; Valpione, S.; Miklavcic, D.; Mocellin, S.; et al. Electrochemotherapy—Emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur. J. Surg. Oncol. 2019, 45, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Cemazar, M.; Sersa, G. Recent advances in electrochemotherapy. Bioelectricity 2019, 1, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Batista Napotnik, T.; Miklavcic, D. In vitro Electroporation Detect. Methods—Overview. Bioelectrochemistry 2018, 120, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Sozer, E.B.; Pocetti, C.F.; Vernier, P.T. Transport of charged small molecules after electropermeabilization—Drift and diffusion. BMC Biophys. 2018, 11, 4. [Google Scholar] [CrossRef]
- Tremble, L.F.; Heffron, C.; Forde, P.F. The effect of calcium electroporation on viability, phenotype and function of melanoma conditioned macrophages. Sci. Rep. 2020, 10, 20645. [Google Scholar] [CrossRef]
- Rajeckaite, V.; Jakstys, B.; Rafanavicius, A.; Maciulevicius, M.; Jakutaviciute, M.; Satkauskas, S. Calcein release from cells In vitro Via Revers. Irreversible Electroporation. J. Membr. Biol. 2018, 251, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Jakstys, B.; Jakutaviciute, M.; Uzdavinyte, D.; Satkauskiene, I.; Satkauskas, S. Correlation between the loss of intracellular molecules and cell viability after cell electroporation. Bioelectrochemistry 2020, 135, 107550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, C.C.; Wang, L.; Yuan, F. Enhancing cell viability and efficiency of plasmid DNA electrotransfer through reducing plasma membrane permeabilization. Bioelectricity 2020, 2, 251–257. [Google Scholar] [CrossRef]
- Asada, A.; Aoki, H.; Kurita, H.; Antoniu, A.; Yasuda, H.; Takashima, K.; Mizuno, A. A novel gene transformation technique using water-in-oil droplet in an electrostatic field. IEEE Trans. Ind. Appl. 2013, 49, 311–315. [Google Scholar] [CrossRef]
- Kurita, H.; Takahashi, S.; Asada, A.; Matsuo, M.; Kishikawa, K.; Mizuno, A.; Numano, R. Novel parallelized electroporation by electrostatic manipulation of a water-in-oil droplet as a microreactor. PLoS ONE 2015, 10, e0144254. [Google Scholar] [CrossRef]
- Kurita, H.; Takao, Y.; Kishikawa, K.; Takashima, K.; Numano, R.; Mizuno, A. Fundamental study on a gene transfection methodology for mammalian cells using water-in-oil droplet deformation in a DC electric field. Biochem. Biophys. Rep. 2016, 8, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishino, T.; Kurita, H.; Kirisawa, R.; Shimamoto, Y.; Numano, R.; Kitamura, H. Introduction of a plasmid and a protein into bovine and swine cells by water-in-oil droplet electroporation. J. Vet Med. Sci. 2020, 82, 14–22. [Google Scholar] [CrossRef]
- Kurita, H.; Nihonyanagi, H.; Watanabe, Y.; Sugano, K.; Shinozaki, R.; Kishikawa, K.; Numano, R.; Takashima, K. Mechanistic studies of gene delivery into mammalian cells by electrical short-circuiting via an aqueous droplet in dielectric oil. PLoS ONE 2020, 15, e0243361. [Google Scholar] [CrossRef]
- Robertson, M.J.; Deane, F.M.; Stahlschmidt, W.; von Kleist, L.; Haucke, V.; Robinson, P.J.; McCluskey, A. Synthesis of the Pitstop family of clathrin inhibitors. Nat. Protoc. 2014, 9, 1592–1606. [Google Scholar] [CrossRef]
- Wu, M.; Yuan, F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS ONE 2011, 6, e20923. [Google Scholar] [CrossRef]
- Rosazza, C.; Meglic, S.H.; Zumbusch, A.; Rols, M.P.; Miklavcic, D. Gene electrotransfer: A mechanistic perspective. Curr. Gene Ther. 2016, 16, 98–129. [Google Scholar] [CrossRef] [Green Version]
- Rosazza, C.; Deschout, H.; Buntz, A.; Braeckmans, K.; Rols, M.P.; Zumbusch, A. Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol. Ther. Nucleic Acids 2016, 5, e286. [Google Scholar] [CrossRef] [Green Version]
- Iversen, T.G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185. [Google Scholar] [CrossRef]
- Rennick, J.J.; Johnston, A.P.R.; Parton, R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021, 16, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Antov, Y.; Barbul, A.; Korenstein, R. Electroendocytosis: Stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Exp. Cell Res. 2004, 297, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Antov, Y.; Barbul, A.; Mantsur, H.; Korenstein, R. Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J. 2005, 88, 2206–2223. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dov, N.; Rozman Grinberg, I.; Korenstein, R. Electroendocytosis is driven by the binding of electrochemically produced protons to the cell’s surface. PLoS ONE 2012, 7, e50299. [Google Scholar] [CrossRef] [Green Version]
- Yadegari-Dehkordi, S.; Firoozabadi, S.M.; Forouzandeh Moghadam, M.; Shankayi, Z. Role of Endocytosis Pathways in Electropermeablization of MCF7 Cells Using Low Voltage and High Frequency Electrochemotherapy. Cell J. 2021, 23, 445–450. [Google Scholar] [CrossRef]
- Rols, M.P.; Teissie, J. Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur. J. Biochem. 1989, 179, 109–115. [Google Scholar] [CrossRef]
- Djuzenova, C.S.; Zimmermann, U.; Frank, H.; Sukhorukov, V.L.; Richter, E.; Fuhr, G. Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim. Biophys. Acta (BBA)-Biomembr. 1996, 1284, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Pucihar, G.; Kotnik, T.; Kandušer, M.; Miklavčič, D. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 2001, 54, 107–115. [Google Scholar] [CrossRef]
- Silve, A.; Leray, I.; Poignard, C.; Mir, L.M. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Sci. Rep. 2016, 6, 19957. [Google Scholar] [CrossRef] [Green Version]
- Ruzgys, P.; Jakutaviciute, M.; Satkauskiene, I.; Cepurniene, K.; Satkauskas, S. Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro. Sci. Rep. 2019, 9, 1436. [Google Scholar] [CrossRef] [PubMed]
- Sherba, J.J.; Hogquist, S.; Lin, H.; Shan, J.W.; Shreiber, D.I.; Zahn, J.D. The effects of electroporation buffer composition on cell viability and electro-transfection efficiency. Sci. Rep. 2020, 10, 3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novickij, V.; Rembialkowska, N.; Staigvila, G.; Kulbacka, J. Effects of extracellular medium conductivity on cell response in the context of sub-microsecond range calcium electroporation. Sci. Rep. 2020, 10, 3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, Y.; Nihonyanagi, H.; Numano, R.; Shibata, T.; Takashima, K.; Kurita, H. Influence of Electroporation Medium on Delivery of Cell-Impermeable Small Molecules by Electrical Short-Circuiting via an Aqueous Droplet in Dielectric Oil: A Comparison of Different Fluorescent Tracers. Sensors 2022, 22, 2494. https://doi.org/10.3390/s22072494
Watanabe Y, Nihonyanagi H, Numano R, Shibata T, Takashima K, Kurita H. Influence of Electroporation Medium on Delivery of Cell-Impermeable Small Molecules by Electrical Short-Circuiting via an Aqueous Droplet in Dielectric Oil: A Comparison of Different Fluorescent Tracers. Sensors. 2022; 22(7):2494. https://doi.org/10.3390/s22072494
Chicago/Turabian StyleWatanabe, Yuki, Hirohito Nihonyanagi, Rika Numano, Takayuki Shibata, Kazunori Takashima, and Hirofumi Kurita. 2022. "Influence of Electroporation Medium on Delivery of Cell-Impermeable Small Molecules by Electrical Short-Circuiting via an Aqueous Droplet in Dielectric Oil: A Comparison of Different Fluorescent Tracers" Sensors 22, no. 7: 2494. https://doi.org/10.3390/s22072494
APA StyleWatanabe, Y., Nihonyanagi, H., Numano, R., Shibata, T., Takashima, K., & Kurita, H. (2022). Influence of Electroporation Medium on Delivery of Cell-Impermeable Small Molecules by Electrical Short-Circuiting via an Aqueous Droplet in Dielectric Oil: A Comparison of Different Fluorescent Tracers. Sensors, 22(7), 2494. https://doi.org/10.3390/s22072494