Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Contributions
- A brief literature review for IBFD, NOMA and their system requirements in 6G technology for developing a background for the reader.
- Propose and discuss a novel Reflective In-Band Full-Duplex (R-IBFD) algorithm.
- Use R-IBFD for interference management and security enhancement.
- Derive secrecy outage probability for R-IBFD, for selection of a relay amongst K relays.
- Show the usefulness of the proposed R-IBFD with ML for the forthcoming 6G system with numerous devices and large data.
- Simulate R-IBFD for N-number of users to show minimal interference and security management as compared to baseline NOMA and HD.
2. Reflective In-Band Full-Duplex with NOMA in beyond 5G
2.1. System Model
2.2. Addition of Artificial Noise for Improved Security
3. System Analysis for a Two-User System
3.1. Performance Evaluation
3.2. Computation of Secrecy Capacity
3.3. Relay Selection
3.4. Computation of Secrecy Outage Probability
3.5. Secrecy Throughput Evaluation
4. System Analysis for a Four User System and Machine Learning
4.1. Optimization of Reflective IBFD with ML
4.1.1. Machine Learning-Based Genetic Algorithm
4.1.2. Sum Secrecy Capacity Optimization Problems
5. Use-Cases of Reflective IBFD
6. Performance Evaluation
6.1. Two-User System
6.2. Four-User System
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Moradi, M.; Naghdi, N.; Hemmati, H.; Asadi-Samani, M.; Bahmani, M. Effect of Ultra High Frequency Mobile Phone Radiation on Human Health. Electron. Physician 2016, 8, 2452–2457, Erratum in Electron. Physician 2017, 9, 4473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.; Jayakody, D.N.K. Full Duplex Component-Forward Cooperative Communication for a Secure Wireless Communication System. Electronics 2020, 9, 2102. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, M.; Wu, G.; Alam, M.; Liang, Y.; Li, S. A Survey of Advanced Techniques for Spectrum Sharing in 5G Networks. IEEE Wirel. Commun. 2017, 24, 44–51. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G.; Ma, Z.; Zhang, X.; Fan, P.; Chen, S.; Yu, F.R. When Full Duplex Wireless Meets Non-Orthogonal Multiple Access: Opportunities and Challenges. IEEE Wirel. Commun. 2019, 26, 148–155. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shi, X.; Chalise, B.K.; Ding, Z.; Suraweera, H.A.; Zhong, C.; Thompson, J.S. Full-Duplex Non-Orthogonal Multiple Access for Next Generation Wireless Systems. IEEE Commun. Mag. 2019, 57, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Nasir, A.A.; Tuan, H.D.; Duong, T.Q. Fractional Time Exploitation for Serving IoT Users with Guaranteed QoS by 5G Spectrum. IEEE Commun. Mag. 2018, 56, 128–133. [Google Scholar] [CrossRef]
- Yadav, A.; Dobre, O.A. All Technologies Work Together for Good: A Glance at Future Mobile Networks. IEEE Wirel. Commun. 2018, 25, 10–16. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A.; Ding, Z. Exploiting Full/Half-Duplex User Relaying in NOMA Systems. IEEE Trans. Commun. 2018, 66, 560–575. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Chalise, B.K.; Hakimi, A.; Mobini, Z.; Suraweera, H.A.; Ding, Z. Beamforming Design and Power Allocation for Full-Duplex Non-Orthogonal Multiple Access Cognitive Relaying. IEEE Trans. Commun. 2018, 66, 5952–5965. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Deng, C.; Mathiopoulos, P.T.; Ding, Z.; Liu, Y. Full-Duplex Cooperative NOMA Relaying Systems With I/Q Imbalance and Imperfect SIC. IEEE Wirel. Commun. Lett. 2020, 9, 17–20. [Google Scholar] [CrossRef]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Guizani, M. Cross Layer NOMA Interference Mitigation for Femtocell Users in 5G Environment. IEEE Trans. Veh. Technol. 2019, 68, 4721–4733. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, P.; Jayakody, D.N.K.; Liyanage, M. A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions. IEEE Commun. Surv. Tutor. 2020, 22, 196–248. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ren, P.; Lin, H. Combat Hybrid Eavesdropping in Power-Domain NOMA: Joint Design of Timing Channel and Symbol Transformation. IEEE Trans. Veh. Technol. 2018, 67, 4998–5012. [Google Scholar] [CrossRef]
- Goel, S.; Negi, R. Guaranteeing Secrecy using Artificial Noise. IEEE Trans. Wirel. Commun. 2008, 7, 2180–2189. [Google Scholar] [CrossRef]
- Sergey, S.; Elsayed, A.; Alireza, S.B.; Waleed, Y.; Ahmed, M.E. Frequency and Timing Synchronization for In-Band Full-Duplex OFDM System. In Proceedings of the 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Panse, V.; Jain, T.K.; Sharma, P.K.; Kothari, A. Digital Self-interference cancellation in the era of machine learning:A comprehensive review. Phys. Commun. 2021, 50, 101526. [Google Scholar] [CrossRef]
- Firouzabadi, A.D.; Rabiei, A.M.; Vehkaperä, M. Fractional Frequency Reuse in Random Hybrid FD/HD Small Cell Networks With Fractional Power Control. IEEE Trans. Wirel. Commun. 2021, 20, 6691–6705. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Li, B. Cooperative Secure Transmission in MISO-NOMA Networks. Electronics 2020, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.-N.; Voznak, M. Multi-Points Cooperative Relay in NOMA System with N-1 DF Relaying Nodes in HD/FD Mode for N User Equipments with Energy Harvesting. Electronics 2019, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, M.; Zhang, C.; Khan, W.U.; Wu, J.; Rabie, K.M.; Kharel, R. Security Analysis of Multi-Antenna NOMA Networks Under I/Q Imbalance. Electronics 2019, 8, 1327. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Tan, Y.; Makhanbet, M.; Zhang, X. Improving Physical Layer Security of Cooperative NOMA System with Wireless-Powered Full-Duplex Relaying. Information 2021, 12, 279. [Google Scholar] [CrossRef]
- Nomikos, N.; Trakadas, P.; Hatziefremidis, A.; Voliotis, S. Full-Duplex NOMA Transmission with Single-Antenna Buffer-Aided Relays. Electronics 2019, 8, 1482. [Google Scholar] [CrossRef] [Green Version]
- Amer, A.; Ahmad, A.-M.; Hoteit, S. Resource Allocation for Downlink Full-Duplex Cooperative NOMA-Based Cellular System with Imperfect SI Cancellation and Underlaying D2D Communications. Sensors 2021, 21, 2768. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, K.; Vasilakos, A.V.; Hanzo, L. Full-Duplex Wireless Communications: Challenges, Solutions, and Future Research Directions. Proc. IEEE 2016, 104, 1369–1409. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Stark, W. Full duplex device to device communication in cellular networks. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 3–6 February 2014; pp. 721–725. [Google Scholar] [CrossRef]
- Xu, Z.; Petrunin, I.; Li, T.; Tsourdos, A. Efficient Allocation for Downlink Multi-Channel NOMA Systems Considering Complex Constraints. Sensors 2021, 21, 1833. [Google Scholar] [CrossRef]
- Khan, R.; Jayakody, D.N.K.; Pervaiz, H.; Tafazolli, R. Modulation Based Non-Orthogonal Multiple Access for 5G Resilient Networks. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Khan, R.; Jayakody, D.N.K.; Sharma, V.; Kumar, V.; Kaur, K.; Chang, Z. A Machine Learning Based Energy-Efficient Non-Orthogonal Multiple Access Scheme. In Proceedings of the International Forum on Strategic Technology, Tomsk, Russia, 14–17 October 2019; pp. 1–6. [Google Scholar]
- Madeira, J.; Guerreiro, J.; Serra, H.; Dinis, R.; Montezuma, P.; Campos, L.M. A Physical Layer Security Technique for NOMA Systems with MIMO SC-FDE Schemes. Electronics 2020, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Li, Q.; Li, X.; Peng, H.; Zhang, C.; Rabie, K.M.; Kharel, R. I/Q Imbalance and Imperfect SIC on Two-Way Relay NOMA Systems. Electronics 2020, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.W.; Hassan, S.A.; Jung, H. On the Symbol Error Probability of STBC-NOMA with Timing Offsets and Imperfect Successive Interference Cancellation. Electronics 2021, 10, 1386. [Google Scholar] [CrossRef]
- Khan, A.; Usman, M.A.; Usman, M.R.; Ahmad, M.; Shin, S.-Y. Link and System-Level NOMA Simulator: The Reproducibility of Research. Electronics 2021, 10, 2388. [Google Scholar] [CrossRef]
- Do, D.-T.; Van Nguyen, M.-S.; Hoang, T.-A.; Voznak, M. NOMA-Assisted Multiple Access Scheme for IoT Deployment: Relay Selection Model and Secrecy Performance Improvement. Sensors 2019, 19, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Song, X.; Ma, Y.; Xie, Z. Power Efficient Secure Full-Duplex SWIPT Using NOMA and D2D with Imperfect CSI. Sensors 2020, 20, 5395. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, H.; Zhang, N.; Han, G.; Liu, M. Dynamic Divide Grouping Non-Orthogonal Multiple Access in Terrestrial-Satellite Integrated Network. Sensors 2021, 21, 6199. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Asif, R. Reflective In-Band Full Duplex NOMA Communications for Secure 5G Networks. In Proceedings of the 2021 International Conference on Smart Applications, Communications and Networking (SmartNets), Glasgow, UK, 22–24 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Z.; Xiao, M.; Ding, Z.; Fan, P. Full-Duplex Device-to-Device-Aided Cooperative Non-orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2017, 66, 4467–4471. [Google Scholar] [CrossRef]
- Yin, L.; Chenggong, W.; Kai, M.; Kuanxin, B. A NOMA Power Allocation Strategy Based on Genetic Algorithm. Commun. Signal Process. Syst. 2019, 571, 2182–2190. [Google Scholar]
- Khan, R.; Jayakody, D.N.K. An Ultra-Reliable and Low Latency Communications Assisted Modulation based Non-Orthogonal Multiple Access Scheme. Phys. Commun. 2020, 43, 101035. [Google Scholar] [CrossRef]
Citation | Theme | Discussed Technologies | Target |
---|---|---|---|
[4] | C-RAN-based FD-NOMA | Relay-based cooperative communication and D2D | Performance comparison and measurements |
[5] | Applications of FD-NOMA | Cellular, relay and cognitive radio | Comparison and discussion |
[6] | QoS with 5G spectrum | FD, massive MIMO, NOMA, SWIPT | Performance evaluation and comparison between the technologies |
[7] | Combination of potential technologies | massive MIMO, mmWave, FD, NOMA, carrier aggregation, CR, and network ultra-densification | Combined coupling factors, problems and possible solutions for the existing literature combination |
[3] | Spectrum Sharing in 5G | D2D, in-band FD, NOMA, and LTE | Discussion of research methodologies and challenges in 5G networks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Tsiga, N.; Asif, R. Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems. Sensors 2022, 22, 2508. https://doi.org/10.3390/s22072508
Khan R, Tsiga N, Asif R. Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems. Sensors. 2022; 22(7):2508. https://doi.org/10.3390/s22072508
Chicago/Turabian StyleKhan, Rabia, Nyasha Tsiga, and Rameez Asif. 2022. "Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems" Sensors 22, no. 7: 2508. https://doi.org/10.3390/s22072508
APA StyleKhan, R., Tsiga, N., & Asif, R. (2022). Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems. Sensors, 22(7), 2508. https://doi.org/10.3390/s22072508