Highly Sensitive Detection of the Insecticide Azamethiphos by Tris(2,2′-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemical and Material
2.2. Apparatus
2.3. ECL Detection
2.4. Real Sample Analysis Procedure
3. Result and Discussion
3.1. Electrochemical and ECL Phenomena of Ru(bpy)32+/AZA
3.2. ECL Mechanism
3.3. pH Optimization
3.4. Ru(bpy)32+ Concentration Effect
3.5. Detection of AZA
3.6. Selectivity of the ECL Sensor Developed
3.7. Analytical Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parsons, A.E.; Escobar-Lux, R.H.; Sævik, P.N.; Samuelsen, O.B.; Agnalt, A.-L. The impact of anti-sea lice pesticides, azamethiphos and deltamethrin, on european lobster (Homarus gammarus) larvae in the norwegian marine environment. Environ. Pollut. 2020, 264, 114725. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.-G.T.; Horsberg, T.E. Plasma concentrations of emamectin benzoate after slice™ treatments of atlantic salmon (salmosalar): Differences between fish, cages, sites and seasons. Aquaculture 2009, 288, 22–26. [Google Scholar] [CrossRef]
- Costello, M.J. The global economic cost of sea lice to the salmonid farming industry. J. Fish Dis. 2009, 32, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Frantzen, M.; Bytingsvik, J.; Tassara, L.; Reinardy, H.C.; Refseth, G.H.; Watts, E.J.; Evenset, A. Effects of the sea lice bath treatment pharmaceuticals hydrogen peroxide, azamethiphos and deltamethrin on egg-carrying shrimp (Pandalus borealis). Mar. Environ. Res. 2020, 159, 105007. [Google Scholar] [CrossRef] [PubMed]
- Aaen, S.M.; Hamre, L.A.; Horsberg, T.E. A screening of medicinal compounds for their effect on egg strings and nauplii of the salmon louse lepeophtheirussalmonis (krøyer). J. Fish Dis. 2016, 39, 1201–1212. [Google Scholar] [CrossRef]
- Intorre, L.; Soldani, G.; Cognetti-Varriale, A.M.; Monni, G.; Meucci, V.; Pretti, C. Safety of azamethiphos in eel, seabass and trout. Pharmacol. Res. 2004, 49, 171–176. [Google Scholar] [CrossRef]
- Fournier, D.; Mutero, A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp. Biochem. Physiol. C Pharmacol. 1994, 108, 19–31. [Google Scholar] [CrossRef]
- Hille, S. A literature review of the blood chemistry of rainbow trout, salmogairdneri rich. J. Fish Biol. 1982, 20, 535–569. [Google Scholar] [CrossRef]
- Ferri, J.; Popovic, N.T.; Coz-Rakovac, R.; Beer-Ljubic, B.; Strunjak-Perovic, I.; Skeljo, F.; Jadan, M.; Petric, M.; Barisic, J.; Simpraga, M.; et al. The effect of artificial feed on blood biochemistry profile and liver histology of wild saddled bream, obladamelanura (sparidae). Mar. Environ. Res. 2011, 71, 218–224. [Google Scholar] [CrossRef]
- Adel, M.; Amiri, A.A.; Zorriehzahra, J.; Nematolahi, A.; Esteban, M.Á. Effects of dietary peppermint (mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry caspian white fish (rutilus frisiikutum). FishShellfish Immunol. 2015, 45, 841–847. [Google Scholar] [CrossRef]
- Rehulka, J. Haematological analyses in rainbow trout oncorhynchus mykiss affected by viral haemorrhagicsepticaemia (vhs). Dis. Aquat. Org. 2003, 56, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benfey, T.J.; Biron, M. Acute stress response in triploid rainbow trout (oncorhynchus mykiss) and brook trout (salvelinus fontinalis). Aquaculture 2000, 184, 167–176. [Google Scholar] [CrossRef]
- Javed, M.; Ahmad, M.I.; Usmani, N.; Ahmad, M. Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in channa punctatus exposed to heavy metal loaded waste water. Sci. Rep. 2017, 7, 1675. [Google Scholar] [CrossRef] [PubMed]
- Boran, H.; Altinok, I. Impacts of chloramine-t treatment on antioxidant enzyme activities and genotoxicity in rainbow trout, oncorhynchus mykiss (walbaum). J. Fish Dis. 2014, 37, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, G.; Mavridis, C.; Belantis, C.; Zisis, I.E.; Skamagkas, I.; Fragkiadoulaki, I.; Heretis, I.; Tzortzis, V.; Psathakis, K.; Tsatsakis, A.; et al. Nephrotoxicity issues of organophosphates. Toxicology 2018, 406–407, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Balayan, S.; Hooda, V.; Sarin, R.K.; Chauhan, N. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int. J. Biol. Macromol. 2020, 164, 3943–3952. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, X.; Zhang, Z.; Yin, J. Preparation of magnetic flower-like molybdenum disulfide hybrid materials for the extraction of organophosphorus pesticides from environmental water samples. J. Chromatogr. A 2020, 1631, 461583. [Google Scholar] [CrossRef]
- Zhong, M.; Tang, J.; Guo, X.; Guo, C.; Li, F.; Wu, H. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the bohai, yellow and east china seas. Sci. Total Environ. 2020, 741, 140434. [Google Scholar] [CrossRef]
- Kumar, V.; Vaid, K.; Bansal, S.A.; Kim, K.-H. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosens. Bioelectron. 2020, 165, 112382. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, P.; Tang, J.; Zeng, Z.; Tang, D. Ultrasensitive split-type electrochemical sensing platform for sensitive determination of organophosphorus pesticides based on MnO2 nanoflower-electron mediator as a signal transduction system. Anal. Bioanal. Chem. 2020, 412, 6939–6945. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Z.; Jin, M.; Du, P.; Chen, G.; Cui, X.; Zhang, Y.; Qin, G.; Yan, F.; Abd El-Aty, A.M.; et al. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem. 2020, 326, 126813. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wu, Y.; Chen, G.; Jiao, L.; Hu, L.; Gu, W.; Zhu, C. Dissociable photoelectrode materials boost ultrasensitive photoelectrochemical detection of organophosphorus pesticides. Anal. Chim. Acta 2020, 1130, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhou, X.; Yu, D.; Jiao, S.; Han, X.; Zhang, S.; Yin, H.; Mao, H. Pesticide residues identification by impedance time-sequence spectrum of enzyme inhibition on multilayer paper-based microfluidic chip. J. Food Process Eng. 2020, 43, e13544. [Google Scholar] [CrossRef]
- Pashaei, B.; Shahroosvand, H.; Moharramnezhad, M.; Kamyabi, M.A.; Bakhshi, H.; Pilkington, M.; Nazeeruddin, M.K. Two in one: A dinuclearRu(ii) complex for deep-red light-emitting electrochemical cells and as an electrochemiluminescence probe for organophosphorus pesticides. Inorg. Chem. 2021, 60, 17040–17050. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jiang, D.; Zhu, J.-J. High-resolution imaging of catalytic activity of a single graphene sheet using electrochemiluminescence microscopy. Chem. Sci. 2021, 12, 4794–4799. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.; Bashir, S.; Kitte, S.A.; Li, H.; Jin, Y. High-efficiency cathodic electrochemiluminescence of the tris(2,2′-bipyridine)ruthenium(ii)/n-hydroxy compound system and its use for sensitive “turn-on” detection of mercury(ii) and methyl blue. Chem. Commun. 2020, 56, 1827–1830. [Google Scholar] [CrossRef]
- Raju, C.V.; Kumar, S.S. Highly sensitive novel cathodic electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) using glutathione as a co-reactant. Chem. Commun. 2017, 53, 6593–6596. [Google Scholar] [CrossRef]
- Barkae, T.H.; Yuan, F.; Fereja, T.H.; Kitte, S.A.; Ma, X.; Zhang, W.; Xu, G. Tris(2,2′-bipyridine)ruthenium(ii)/thiosemicarbazide electrochemiluminescence for the detection of thiosemicarbazide and mercury (ii). Electrochim. Acta 2021, 380, 138171. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ecl). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef]
- Saqib, M.; Bashir, S.; Li, H.; Li, C.; Wang, S.; Jin, Y. Efficient electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) with n-hydroxysulfosuccinimide as a coreactant for selective and sensitive detection of l-proline and mercury(ii). Anal. Chem. 2019, 91, 12517–12524. [Google Scholar] [CrossRef]
- Wei, M.; Zeng, G.; Lu, Q. Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim. Acta 2014, 181, 121–127. [Google Scholar] [CrossRef]
- Chen, D.; Jiao, Y.-H.; Jia, H.; Guo, Y.; Sun, X.; Wang, X.; Xu, J.-G. Acetylcholinesterase biosensor for chlorpyrifos detection based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite modified screen-printed electrode. Int. J. Electrochem. Sci. 2015, 10, 10491–10501. [Google Scholar]
- Fereja, T.H.; Kitte, S.A.; Snizhko, D.; Qi, L.; Nsabimana, A.; Liu, Z.; Xu, G. Tris(2,2′-bipyridyl)ruthenium(ii) electrochemiluminescent determination of ethyl formate. Anal. Bioanal. Chem. 2018, 410, 6779–6785. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Niu, W.; Li, H.; Hu, L.; Yuan, Y.; Xu, G. Effect of hydroxyl and amino groups on electrochemiluminescence activity of tertiary amines at low tris(2,2′-bipyridyl)ruthenium(ii) concentrations. Talanta 2010, 81, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Choi, J.P.; Bard, A.J. Electrogenerated chemiluminescence 69: The tris(2,2′-bipyridine)ruthenium(ii), (Ru(bpy)32+)/tri-n-propylamine (tpra) system revisited-a new route involving tpra*+ cation radicals. J. Am. Chem. Soc. 2002, 124, 14478–14485. [Google Scholar] [CrossRef]
- Zu, Y.; Bard, A.J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal.Chem. 2000, 72, 3223–3232. [Google Scholar] [CrossRef]
- Kitte, S.A.; Wang, C.; Li, S.; Zholudov, Y.; Qi, L.; Li, J.; Xu, G. Electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) using n-(3-aminopropyl)diethanolamine as coreactant. Anal. Bioanal. Chem. 2016, 408, 7059–7065. [Google Scholar] [CrossRef]
- Metera, K.L.; Hänni, K.D.; Zhou, G.; Nayak, M.K.; Bazzi, H.S.; Juncker, D.; Sleiman, H.F. Luminescent iridium(iii)-containing block copolymers: Self-assembly into biotin-labeled micelles for biodetection assays. ACS Macro Lett. 2012, 1, 954–959. [Google Scholar] [CrossRef]
- Li, H.-J.; Han, S.; Hu, L.-Z.; Xu, G.-B. Progress in Ru(bpy)32+ electrogenerated chemiluminescence. Chin. J. Anal. Chem. 2009, 37, 1557–1565. [Google Scholar] [CrossRef]
- Aulakh, J.S.; Malik, A.K.; Mahajan, R.K. Solid phase microextraction-high pressure liquid chromatographic determination of nabam, thiram and azamethiphos in water samples with uv detection. Preliminary data. Talanta 2005, 66, 266–270. [Google Scholar]
Sample | Amount Added (μM) | Obtained (μM) | Recovery% | RSD |
---|---|---|---|---|
Lake water | 0.5 | 0.49 | 98% | 4.33 |
10 | 10.2 | 102% | 3.66 | |
50 | 48.5 | 97% | 4.8 | |
Waste water | 0.5 | 0.48 | 96% | 2.19 |
10 | 9.9 | 99% | 2.42 | |
50 | 50.5 | 101% | 4.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkae, T.H.; Zeid, A.M.; Xu, G. Highly Sensitive Detection of the Insecticide Azamethiphos by Tris(2,2′-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence. Sensors 2022, 22, 2519. https://doi.org/10.3390/s22072519
Barkae TH, Zeid AM, Xu G. Highly Sensitive Detection of the Insecticide Azamethiphos by Tris(2,2′-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence. Sensors. 2022; 22(7):2519. https://doi.org/10.3390/s22072519
Chicago/Turabian StyleBarkae, Tesfaye Hailemariam, Abdallah M. Zeid, and Guobao Xu. 2022. "Highly Sensitive Detection of the Insecticide Azamethiphos by Tris(2,2′-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence" Sensors 22, no. 7: 2519. https://doi.org/10.3390/s22072519
APA StyleBarkae, T. H., Zeid, A. M., & Xu, G. (2022). Highly Sensitive Detection of the Insecticide Azamethiphos by Tris(2,2′-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence. Sensors, 22(7), 2519. https://doi.org/10.3390/s22072519