Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach
Abstract
:1. Introduction
2. Numerical Methodology
2.1. Conceptual Model for Cyclic Shear Failure Behavior in Slip Zone Soils
2.2. Measurement Indicators- Coordination Number
2.3. Verification of the Accuracy of the Numerical Model and Details of the Applied Cyclic Loading
2.3.1. Stress Initialization of the Numerical Model
2.3.2. Servo Control of the Numerical Model in Predetermined Confining Pressure
2.3.3. Implementation of Cyclic Loading
2.4. Comparison of Numerical Simulation and Laboratory Tests
3. Analysis for Strain Softening Characteristics of Slip Zone Soil
3.1. Coordination Number Analysis for Strain Softening Characteristics
3.2. Stress Analysis for Strain Softening Characteristics of Slip Zone Soil
4. Impacts of Landslide Formation
4.1. Mechanical Model of Landslide Mechanism
4.2. Calculation of Stability Coefficient
4.3. Application of Mechanical Learning-Based Time Series Analysis to Slope Stability Prediction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Werner, E.D.; Friedman, H.P. Landslides: Causes, Types and Effects; Nova Science Pub. Incorporated: New York, NY, USA, 2010. [Google Scholar]
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Li, H.; Qi, S.; Chen, H.; Liao, H.; Cui, Y.; Zhou, J. Mass movement and formation process analysis of the two sequential landslide dam events in Jinsha River, Southwest China. Landslides 2019, 16, 2247–2258. [Google Scholar] [CrossRef]
- Ma, J.W.; Niu, X.X.; Tang, H.M.; Wang, Y.K.; Wen, T.; Zhang, J.R. Displacement prediction of a complex landslide in the Three Gorges Reservoir Area (China) using a hybrid computational intelligence approach. Complexity 2020, 2020, 2624547. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Kieffer, D.S.; Jibson, R.; Rathje, E.M. Landslides triggered by the 2004 Niigata ken Chuetsu, Japan, earthquake. Earthq. Spectra 2006, 22, 47–73. [Google Scholar] [CrossRef]
- Chigira, M.; Yagi, H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Eng. Geol. 2006, 82, 202–221. [Google Scholar] [CrossRef]
- Wang, F.; Fan, X.; Yunus, A.P.; Subramanian, S.S.; Alonso-Rodriguez, A.F.; Dai, L.; Xu, Q.; Huang, R. Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: Spatial distribution, controlling factors, and possible failure mechanism. Landslides 2019, 16, 1551–1566. [Google Scholar] [CrossRef]
- Uzuoka, R.; Sento, N.; Kazama, M.; Unno, T. Landslides during the earthquakes on May 26 And July 26, 2003 in Miyagi, Japan. Soils Found. 2005, 45, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Kasai, M.; Ikeda, M.; Asahina, T. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 2009, 113, 57–69. [Google Scholar] [CrossRef]
- Strait, T. Death Toll from Hokkaido Quake Hits 44, Power SUPPLY and Toyota Output Disrupted. 2018. Available online: https://www.straitstimes.com/asia/east-asia/death-toll-from-hokkaido-quake-hits-44-power-supply-and-toyota-output-disrupted (accessed on 20 January 2022).
- Evans, S. Japan May Face Billion Dollar Losses from Typhoon Jebi, Hokkaido Quake. 2018. Available online: https://www.artemis.bm/news/japan-may-face-billion-dollar-losses-from-typhoon-jebi-hokkaido-quake/ (accessed on 20 January 2022).
- Zhang, J.; van Westen, C.J.; Tanyas, H.; Mavrouli, O.; Ge, Y.; Bajrachary, S.; Gurung, D.R.; Dhital, M.R.; Khanal, N.R. How size and trigger matter: Analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, central Himalaya. Nat. Hazard Earth Sys. Sci. 2019, 19, 1789–1805. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.; Johns, T.; Krinner, G.; et al. Chapter 12-Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis; IPCC Working Group I Contribution to AR5, Cambridge University Press(Pub): Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar]
- Crozier, M.J. Deciphering the effect of climate change on landslide activity:a review. Geomorphology 2010, 124, 260–267. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Resatmos. 2006, 111, D4. [Google Scholar] [CrossRef] [Green Version]
- Gawriuczenkow, I.; Kaczmarek, Ł.; Kiełbasiński, K.; Kowalczyk, S.; Mieszkowski, R.; Wójcik, E. Ðlope stability and failure hazards in the light of complex geological surveys. Sci. Rev. Eng. Environ. Sci. 2017, 26, 85–98. [Google Scholar]
- Kaczmarek, Ł.; Popielski, P. Selected components of geological structures and numerical modelling of slope stability. Open Geosci. 2019, 11, 208–218. [Google Scholar] [CrossRef]
- Yin, Y.P.; Wang, L.Q.; Zhang, W.G.; Dai, Z.W. Research on the collapse process of a thick-layer dangerous rock on the reservoir bank. Bull. Eng. Geol. Environ. 2022, 81, 109. [Google Scholar] [CrossRef]
- Wieczorek, G.F. Landslide triggering mechanisms. In: Turner, Shuster(eds) Landslides: Investigation and Mitigation. Res. Board Natl. Res. Counc. Spec. Rep. 1996, 247, 76–90. [Google Scholar]
- Jirásek, M.; Rolshoven, S. Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories. Int. J. Solids Struct. 2009, 46, 2225–2238. [Google Scholar] [CrossRef] [Green Version]
- Schulz, W.H.; Wang, G. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S. J. Geophys. Res. Earth Surf. 2014, 119, 1617–1635. [Google Scholar] [CrossRef]
- Ghayoomi, M.; Suprunenko, G.; Mirshekari, M. Cyclic Triaxial Test to Measure Strain-Dependent Shear Modulus of Unsaturated Sand. Int. J. Geomech. 2017, 17, 4017043. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Sahu, R.; Banerjee, G. Undrained Pore Pressure Prediction in Clayey Soil under Cyclic Loading. Int. J. Geomech. 2015, 15, 4014082. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F. Digital imaging techniques in experimental stress analysis. Opt. Eng. 1982, 21, 213427. [Google Scholar] [CrossRef]
- Potyondy, D.O. The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions. Geosystem. Eng. 2015, 18, 259–265. [Google Scholar] [CrossRef]
- Wu, Y.; Morgan, E. Effect of fabric on the accuracy of computed tomography-based finite element analyses of the vertebra. Biomech. Model. Mechanobiol. 2020, 19, 505–517. [Google Scholar] [CrossRef]
- Alshibli, K.; Alshibli, K.; Reed, A. Advances in Computed Tomography for Geomaterials GeoX 2010; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Wang, B. Geotechnical investigations of an earthquake that triggered disastrous landslides in eastern Canada about 1020 Cal BP. Geoenviron. Disasters 2020, 7, 21. [Google Scholar] [CrossRef]
- Tatard, L. Statistical Analysis of Triggered Landslides: Implication for Earthquake and Weather Controls; Université Joseph-Fourier-Grenoble: Saint Martin, France, 2010. [Google Scholar]
- Asch, T.W.J.; Buma, J.; Beek, L.P.H. A view on some hydrological triggering systems in landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Thokchom, S.; Rastogi, B.; Dogra, N.; Pancholi, V.; Sairam, B.; Bhattacharya, F.; Patel, V. Empirical correlation of SPT blow counts versus shear wave velocity for different types of soils in Dholera, Western India. Nat. Hazards J. Int. Soc. 2017, 86, 1291–1306. [Google Scholar] [CrossRef]
- Thai, P.B.; Tien, B.D.; Prakash, I. Landslide susceptibility modelling using different advanced decision trees methods. Civ. Eng. Environ. Syst. 2018, 35, 139. [Google Scholar] [CrossRef]
- Balogun, A.L.; Rezaie, F.; Pham, Q.B. Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geosci. Front. 2021, 12, 101104. [Google Scholar] [CrossRef]
- Peethambaran, B.; Anbalagan, R.; Kanungo, D.P. A comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian Himalayas. Catena 2020, 195, 104751. [Google Scholar] [CrossRef]
- Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255. [Google Scholar] [CrossRef]
- Jiang, S.H.; Liu, Y.; Zhang, H.L. Quantitatively evaluating the effects of prior probability distribution and likelihood function models on slope reliability assessment. Rock Soil Mech. 2020, 41, 3087. (In Chinese) [Google Scholar]
- Neuland, H. A prediction model of landslips. Catena 1976, 3, 215. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H. A robust data mining approach for formulation of geotechnical engineering systems. Eng. Comput. 2011, 28, 242. [Google Scholar] [CrossRef]
- Martins, F.F.; Miranda, T.F.S. Application of data mining techniques to the safety evaluation of slopes. In Information Technology in Geo-Engineering: Proceedings of the 1st International Conference (ICITG); IOS Press: Amsterdam, The Netherlands, 2010; p. 84. [Google Scholar]
- Tang, H.; Zou, Z.; Xiong, C.; Wu, Y.; Hu, X.; Wang, L.; Lu, S.; Criss, R.E.; Li, C. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China. Eng. Geol. 2010, 186, 17–27. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, J.; Tang, H.; Wang, S.; Xiong, C.; Hu, X. A shear constitutive model for describing the full process of the deformation and failure of slip zone soil. Eng. Geol. 2020, 276, 105766. [Google Scholar] [CrossRef]
- Alaei, E.; Mahboubi, A. A discrete model for simulating shear strength and deformation behavior of rockfill material, considering the particle breakage phenomenon. Granul. Matter. 2012, 14, 707–717. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Ences 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Itasca, PFC, Version 5.0; Itasca Consulting Group Inc.: Minneapolis, MI, USA, 2014.
- Basha, B.M.; Babu, G.L.S. Seismic rotational displacements of gravity walls by pseudodynamic method with curved rupture surface. Int. J. Geomech. 2009, 10, 93–105. [Google Scholar] [CrossRef]
- Basha, B.M.; Babu, G.L.S. Computation of sliding displacements of bridge abutments by pseudo-dynamic method. Soil Dyn. Earthq. Eng. 2009, 29, 103–120. [Google Scholar] [CrossRef]
- Basha, B.M.; Babu, G.L.S. Reliability assessment of internal stability of reinforced soil structures: A pseudo-dynamic approach. Soil Dyn. Earthq. Eng. 2010, 30, 336–353. [Google Scholar] [CrossRef]
- Zhang, Y.; Wong, L.; Meng, F. Brittle fracturing in low-porosity rock and implications to fault nucleation. Eng. Geol. 2021, 285, 106025. [Google Scholar] [CrossRef]
- Hofmann, H.; Babadagli, T.; Zimmermann, G. A grain based modeling study of fracture branching during compression tests in granites. Int. J. Rock Mech. Min. 2015, 77, 152–162. [Google Scholar] [CrossRef]
- Ma, J.W.; Wang, Y.K.; Niu, X.X.; Jiang, S.; Liu, Z.Y. A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression. Stoch. Environ. Res. Risk Assess. 2022, 1–21. [Google Scholar] [CrossRef]
- Chen, G.; Guo, T.Y.; Serati, M. Microcracking mechanisms of cyclic freeze–thaw treated red sandstone: Insights from acoustic emission and thin-section analysis. Constr. Build. Mater. 2022, 329, 127097. [Google Scholar] [CrossRef]
Microparameter of Slip Zone Soil | Unit | Value |
---|---|---|
Minimum particle radius, Rmin | mm | 1 |
Maximum particle radius, Rmax | mm | 2 |
Density, ρ | g/cm3 | 2.36 |
Particle-particle contact modulus, Ec | GPa | 0.03 |
Friction coefficient, μ | - | 1 |
Particle normal stiffness to shear stiffness, kn/ks | - | 1.3 |
Parallel bond normal to shear stiffness ratio, | - | 1.0 |
Parallel bond friction angle, | deg | 25 |
Parallel bond connection modulus, | GPa | 0.01 |
Parallel bond tensile strength | MPa | 16.5 |
Parallel bond cohesion | MPa | 16.5 |
Number of Case | Loading Stress Amplitude/(cm/s) | Loading Number | Slope Safety Factor | Number of Case | Loading Stress Amplitude/(cm/s) | Loading Number | Slope Safety Factor |
---|---|---|---|---|---|---|---|
0 | 0.5 | 0 | 2.87 | 13 | 1.5 | 1500 | 2.3 |
1 | 0.5 | 1500 | 2.6 | 14 | 1.5 | 3000 | 1.9 |
2 | 0.5 | 3000 | 2.3 | 15 | 1.5 | 4500 | 1.72 |
3 | 0.5 | 4500 | 2.1 | 16 | 1.5 | 6000 | 1.6 |
4 | 0.5 | 6000 | 1.8 | 17 | 1.5 | 9000 | 1.35 |
5 | 0.5 | 9000 | 1.6 | 18 | 1.5 | 12,000 | 1.02 |
6 | 0.5 | 12,000 | 1.4 | 19 | 2.2 | 1500 | 1.57 |
7 | 0.9 | 1500 | 2.4 | 20 | 2.2 | 3000 | 1.01 |
8 | 0.9 | 3000 | 2.2 | 21 | 2.2 | 4500 | 0.52 |
9 | 0.9 | 4500 | 1.9 | 22 | 2.2 | 6000 | 0.48 |
10 | 0.9 | 6000 | 1.7 | 23 | 2.2 | 9000 | 0.35 |
11 | 0.9 | 9000 | 1.56 | 24 | 2.2 | 12,000 | 0.25 |
12 | 0.9 | 12,000 | 1.1 |
Type of Model | Parameter Estimate Value | Probability of the Data Statistic | |
---|---|---|---|
Constant | 0.227 | 0.616 | |
AR | Lag1 | 0.019 | 0.762 |
Difference | 1 | ||
MA | Lag1 | 0.714 | 0.000 |
Type of Model | Stationary R-Squared | Normalized BIC | Sratistics | Probability of t Data Statistic |
---|---|---|---|---|
AR | 0.425 | 10.16 | 2.526 | 0.748 |
MA | 0.225 | 12.16 | 3.526 | 0.648 |
Stationary R-Squared | Normalized BIC | Sratistics | Probability of the Data Statistic |
---|---|---|---|
0.747 | 8.16 | 9.526 | 0.848 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Yu, H.; Jiang, N.; Zhou, C.; Luo, X. Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach. Sensors 2022, 22, 2647. https://doi.org/10.3390/s22072647
Wu T, Yu H, Jiang N, Zhou C, Luo X. Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach. Sensors. 2022; 22(7):2647. https://doi.org/10.3390/s22072647
Chicago/Turabian StyleWu, Tingyao, Hongan Yu, Nan Jiang, Chuanbo Zhou, and Xuedong Luo. 2022. "Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach" Sensors 22, no. 7: 2647. https://doi.org/10.3390/s22072647
APA StyleWu, T., Yu, H., Jiang, N., Zhou, C., & Luo, X. (2022). Slope with Predetermined Shear Plane Stability Predictions under Cyclic Loading with Innovative Time Series Analysis by Mechanical Learning Approach. Sensors, 22(7), 2647. https://doi.org/10.3390/s22072647