Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessment
2.3. Procedures
- Time-to-APA, time from the “go” to the beginning of the APA (i.e., APA Onset);
- Time-to-toe-off, time from the “go” to the APA end, calculated as the toe-off event of the swing leg;
- Time-to-heel-strike, the time from the “go” to the heel-strike of the swing leg;
- APA duration, the time from the beginning (i.e., APA onset) to the end (i.e., Toe-off) of the APA waveform;
- Swing phase duration, the time from the toe-off to the heel-strike of the swing leg.
2.4. Statistical Analyses
3. Results
3.1. Participants’ Demographics and Clinical Assessment
3.2. Validation of Body-Fixed Sensor Gait Initiation Metrics
3.3. MAEs Values
3.4. Correlations between Gait Initiation Metrics
3.5. Correlation between Gait Iniation Metrics and Clinical Scales
3.6. Differences in APAs Timing Parameters between PD and ELD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815. [Google Scholar] [CrossRef] [PubMed]
- Crenna, P.; Carpinella, I.; Rabuffetti, M.; Rizzone, M.; Lopiano, L.; Lanotte, M.; Ferrarin, M. Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson’s disease. Exp. Brain Res. 2006, 172, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Gazit, E.; Buchman, A.S.; Dawe, R.; Curran, T.A.; Mirelman, A.; Giladi, N.; Hausdorff, J.M. What happens before the first step? A New Approach to Quantifying Gait Initiation Using a Wearable Sensor. Gait Posture 2020, 76, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018, 285, 3657–3668. [Google Scholar] [CrossRef] [Green Version]
- Lanciego, J.L.; Luquin, N.; Obeso, J.A. Functional Neuroanatomy of the Basal Ganglia. Cold Spring Harb. Perspect. Med. 2012, 2, a009621. [Google Scholar] [CrossRef]
- Rosin, R.; Topka, H.; Dichgans, J. Gait initiation in Parkinson’s disease. Mov. Disord. 1997, 12, 682–690. [Google Scholar] [CrossRef]
- Casal, M.Z.; Peyré-Tartaruga, L.A.; Zanardi, A.P.J.; Ivaniski-Mello, A.; Alves, L.D.; Haas, A.N.; Martinez, F.G. Postural Adjustments and Biomechanics During Gait Initiation and Obstacle Negotiation: A Comparison Between Akinetic-Rigid and Hyperkinetic Parkinson’s Disease. Front. Physiol. 2021, 12, 723628. [Google Scholar] [CrossRef]
- Peterson, D.S.; Horak, F.B. Neural control of walking in people with parkinsonism. Physiology 2016, 31, 95–107. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, K.S.; Coelho, D.B.; de Souza, C.R.; Silva-Batista, C.; Shida, T.K.F.; Teixeira, L.A.; de Lima-Pardini, A.C. Preserved flexibility of dynamic postural control in individuals with Parkinson’s disease. Gait Posture 2021, 86, 240–244. [Google Scholar] [CrossRef]
- Flynn, A.; Allen, N.E.; Dennis, S.; Canning, C.G.; Preston, E. Home-based prescribed exercise improves balance-related activities in people with Parkinson’s disease and has benefits similar to centre-based exercise: A systematic review. J. Physiother. 2019, 65, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Ginis, P.; Nieuwboer, A.; Dorfman, M.; Ferrari, A.; Gazit, E.; Canning, C.G.; Rocchi, L.; Chiari, L.; Hausdorff, J.M.; Mirelman, A. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson’s disease: A pilot randomized controlled trial. Parkinsonism Relat. Disord. 2016, 22, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancona, S.; Faraci, F.D.; Khatab, E.; Fiorillo, L.; Gnarra, O.; Nef, T.; Bassetti, C.L.; Bargiotas, P. Wearables in the home-based assessment of abnormal movements in Parkinson’s disease: A systematic review of the literature. J. Neurol. 2022, 269, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture 2016, 43, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Bonora, G.; Mancini, M.; Carpinella, I.; Chiari, L.; Horak, F.B.; Ferrarin, M. Gait initiation is impaired in subjects with Parkinson’s disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Gait Posture 2017, 51, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Martinez-Mendez, R.; Sekine, M.; Tamura, T. Detection of anticipatory postural adjustments prior to gait initiation using inertial wearable sensors. J. Neuroeng. Rehabil. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Novak, D.; Reberšek, P.; De Rossi, S.M.M.; Donati, M.; Podobnik, J.; Beravs, T.; Lenzi, T.; Vitiello, N.; Carrozza, M.C.; Munih, M. Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 2013, 35, 1713–1720. [Google Scholar] [CrossRef]
- Johansson, D.; Malmgren, K.; Alt Murphy, M. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: A mixed-methods systematic review. J. Neurol. 2018, 265, 1740. [Google Scholar] [CrossRef] [Green Version]
- Deb, R.; Bhat, G.; An, S.; Shill, H.; Ogras, U.Y.; Ali, M. Trends in Technology Usage for Parkinson’s Disease Assessment: A Systematic Review. medRxiv 2021. [Google Scholar] [CrossRef]
- Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing Gait in Parkinson’s Disease Using Wearable Motion Sensors: A Systematic Review. Diseases 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozanne, A.; Johansson, D.; Hällgren Graneheim, U.; Malmgren, K.; Bergquist, F.; Alt Murphy, M. Wearables in epilepsy and Parkinson’s disease—A focus group study. Acta Neurol. Scand. 2018, 137, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Rast, F.M.; Labruyère, R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J. NeuroEng. Rehabil. 2020, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Rovini, E.; Maremmani, C.; Cavallo, F. How wearable sensors can support parkinson’s disease diagnosis and treatment: A systematic review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef]
- Aruin, A.S.; Kanekar, N.; Lee, Y.J.; Ganesan, M. Enhancement of anticipatory postural adjustments in older adults as a result of a single session of ball throwing exercise. Exp. Brain Res. 2015, 233, 649–655. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Lu, M.J.; Zhong, W.H.; Liu, Y.X.; Miao, H.Z.; Li, Y.C.; Ji, M.H. Sample Size for Assessing Agreement between Two Methods of Measurement by Bland-Altman Method. Int. J. Biostat. 2016, 12, 20150039. [Google Scholar] [CrossRef] [Green Version]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Poletti, M.; Frosini, D.; Pagni, C.; Baldacci, F.; Giuntini, M.; Mazzucchi, S.; Tognoni, G.; Lucetti, C.; Del Dotto, P.; Ceravolo, R.; et al. The relationship between motor symptom lateralization and cognitive performance in newly diagnosed drug-naïve patients with Parkinson’s disease. J. Clin. Exp. Neuropsychol. 2013, 35, 124–131. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, 85–94. [Google Scholar] [CrossRef]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Taylor, C.S.; Matsuda, P.N.; Studer, M.T.; Whetten, B.K. Expanding the Scoring System for the Dynamic Gait Index. Phys. Ther. 2013, 93, 1493–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello, E.N.; Esposito, A.; Gramegna, C.; Gazzaniga, V.; Zago, S.; Difonzo, T.; Appollonio, I.M.; Bolognini, N. The Frontal Assessment Battery (FAB) and its sub-scales: Validation and updated normative data in an Italian population sample. Neurol. Sci. 2022, 43, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Ehgoetz Martens, K.A.; Shine, J.M.; Walton, C.C.; Georgiades, M.J.; Gilat, M.; Hall, J.M.; Muller, A.J.; Szeto, J.Y.Y.; Lewis, S.J.G. Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov. Disord. 2018, 33, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Campbell, M.J.; Swinscow, T.D.V. Statistics at Square One; Thomas, D.V., Ed.; Wiley-Blackwell/BMJ Books: Hoboken, NJ, USA, 2009; ISBN 9781405191005. [Google Scholar]
- Massion, J. Movement, posture and equilibrium: Interaction and coordination. Prog. Neurobiol. 1992, 38, 35–56. [Google Scholar] [CrossRef]
- Lencioni, T.; Carpinella, I.; Rabuffetti, M.; Cattaneo, D.; Ferrarin, M. Measures of dynamic balance during level walking in healthy adult subjects: Relationship with age, anthropometry and spatio-temporal gait parameters. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, T.; Anastasi, D.; Carpinella, I.; Castagna, A.; Crippa, A.; Gervasoni, E.; Marzegan, A.; Rabuffetti, M.; Pelosin, E.; Cattaneo, D.; et al. Strategies for maintaining dynamic balance in persons with neurological disorders during overground walking. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1079–1087. [Google Scholar] [CrossRef]
- Hess, J.A.; Woollacott, M.; Shivitz, N. Ankle force and rate of force production increase following high intensity strength training in frail older adults. Aging Clin. Exp. Res. 2006, 18, 107–115. [Google Scholar] [CrossRef]
- Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture 1998, 8, 8–14. [Google Scholar] [CrossRef]
- Burleigh-Jacobs, A.; Horak, F.B.; Nutt, J.G.; Obeso, J.A. Step initiation in Parkinson’s disease: Influence of levodopa and external sensory triggers. Mov. Disord. 1997, 12, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, L.; Chiari, L.; Mancini, M.; Carlson-Kuhta, P.; Gross, A.; Horak, F.B. Step initiation in Parkinson’s disease: Influence of initial stance conditions. Neurosci. Lett. 2006, 406, 128–132. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.L.; Hackney, M.E.; Factor, S.A.; Ting, L.H. Lower Limb Rigidity Is Associated with Frequent Falls in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2019, 6, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Fling, B.W.; Cohen, R.G.; Mancini, M.; Carpenter, S.D.; Fair, D.A.; Nutt, J.G.; Horak, F.B. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS ONE 2014, 9, e100291. [Google Scholar] [CrossRef] [Green Version]
- Ginis, P.; Nackaerts, E.; Nieuwboer, A.; Heremans, E. Cueing for people with Parkinson’s disease with freezing of gait: A narrative review of the state-of-the-art and novel perspectives. Ann. Phys. Rehabil. Med. 2018, 61, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Nieuwboer, A. Cueing for freezing of gait in patients with Parkinson’s disease: A rehabilitation perspective. Mov. Disord. 2008, 23, 475–481. [Google Scholar] [CrossRef]
- Delval, A.; Moreau, C.; Bleuse, S.; Tard, C.; Ryckewaert, G.; Devos, D.; Defebvre, L. Auditory cueing of gait initiation in Parkinson’s disease patients with freezing of gait. Clin. Neurophysiol. 2014, 125, 1675–1681. [Google Scholar] [CrossRef]
- Petrucci, M.N.; Amundsen-Huffmaster, S.; Chung, J.W.; Hsiao-Wecksler, E.T.; MacKinnon, C.D. Can People with Parkinson’s Disease Self-Trigger Gait Initiation? A Comparison of Cueing Strategies. J. Parkinsons Dis. 2022, 12, 607–619. [Google Scholar] [CrossRef]
- Braunlich, K.; Seger, C.A.; Jentink, K.G.; Buard, I.; Kluger, B.M.; Thaut, M.H. Rhythmic auditory cues shape neural network recruitment in Parkinson’s disease during repetitive motor behavior. Eur. J. Neurosci. 2019, 49, 849–858. [Google Scholar] [CrossRef]
- Rogers, M.W.; Kennedy, R.; Palmer, S.; Pawar, M.; Reising, M.; Martinez, K.M.; Simuni, T.; Zhang, Y.; Mackinnon, C.D. Postural preparation prior to stepping in patients with Parkinson’s disease. J. Neurophysiol. 2011, 106, 915–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massot, C.; Simoneau, E.; Peron, D.; Barbier, F.; Kwiatkowki, A.; Donze, C.; Leteneur, S. Simplified stance limb kinetics patterns revealed during gait initiation in early stage of multiple sclerosis. Clin. Biomech. 2022, 91, 105549. [Google Scholar] [CrossRef] [PubMed]
Parameter | Axis | Temporal Window [s] | Description |
---|---|---|---|
Identification of anticipatory postural adjustments onset | |||
APAchange | AP, ML, V | [0.5 − ts: ts + 1.2] | Time point where significant change of mean signal occurs |
APAonset | AP, ML, V | [t(APAchange) − ts: t(APAchange)] | From tAPAchange search backwards for the time point of the first local minimum |
Identification of toe-off of the swing limb | |||
Peakva_max | V | [0.8 + ts: ts + 2] | Time point of the signal positive peak over a predefined threshold |
I_PeakFS | V | [t (Peakva_max) − 1.5: t (Peakva_max) − 0.5] | Time point of the first step calculated at the peak closest to the temporal window closure |
TOswl | V | [t (Peakva_max) − 1.5: t (I_PeakFS) ] | The zero-crossing time point just before the I_PeakFS |
Identification of heel strike of the swing limb | |||
HSswl | V | [t(TOswl): t(I_PeakFS)] | Time point where the signal crossed the 20% value of the vertical accelation signal at I_PeakFS |
Median | (1st–3rd Quartile) | |
---|---|---|
Number of falls | 0 | (2.0–2.0) |
H&Y | 3.0 | (2.5–3.0) |
MDS-UPDRS III | 42.5 | (35.5–54.0) |
MDGI * | 50.0 | (42.0–55.0) |
SPPB | 9.0 | (2.0–4.0) |
FSST | 13.5 | (11.2–20.2) |
C-FOG | 25.0 | (0.0–47.0) |
FAB | 16.0 | (14.0–18.0) |
BAI | 17.0 | (8.0–31.0) |
BDI-II | 13.0 | (10.0–16.0) |
GI Metrics | ICC | Lower Bound | Upper Bound | Cronbach’s Alpha |
---|---|---|---|---|
Time-to-APA | 0.99 | 0.98 | 0.99 | 0.91 |
Time-to-toe-off | 0.99 | 0.98 | 0.99 | 0.99 |
Time-to-heel-strike | 0.99 | 0.99 | 1.00 | 1.00 |
APA duration | 0.99 | 0.97 | 0.99 | 0.99 |
Swing duration | 0.98 | 0.97 | 0.99 | 0.98 |
Parameters | PD | FOG− | FOG+ | ELD | Cohen’ d PD/ELD FOG+/FOG− | |
---|---|---|---|---|---|---|
Time-To-APA [s] | 0.45(0.12) | 0.44(0.10) | 0.46(0.13) | 0.42(0.05) | 0.30 | 0.18 |
Time-To-Toe-Off [s] | 1.26(0.24) | 1.31(0.20) | 1.21(0.26) | 1.00(0.09) * | 1.07 | 0.45 |
Time-To-Heel-Strike [s] | 1.73(0.26) | 1.80(0.23) | 1.66(0.27) | 1.44(0.15) * | 1.10 | 0.55 |
APA duration [s] | 0.81(0.17) | 0.88(0.12) | 0.75(0.19) + | 0.59(0.03) * | 1.20 | 0.78 |
Swing phase duration [s] | 0.47(0.09) | 0.49(0.12) | 0.46(0.06) | 0.43(0.07) | 0.48 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lencioni, T.; Meloni, M.; Bowman, T.; Marzegan, A.; Caronni, A.; Carpinella, I.; Castagna, A.; Gower, V.; Ferrarin, M.; Pelosin, E. Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson’s Disease. Sensors 2022, 22, 2668. https://doi.org/10.3390/s22072668
Lencioni T, Meloni M, Bowman T, Marzegan A, Caronni A, Carpinella I, Castagna A, Gower V, Ferrarin M, Pelosin E. Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson’s Disease. Sensors. 2022; 22(7):2668. https://doi.org/10.3390/s22072668
Chicago/Turabian StyleLencioni, Tiziana, Mario Meloni, Thomas Bowman, Alberto Marzegan, Antonio Caronni, Ilaria Carpinella, Anna Castagna, Valerio Gower, Maurizio Ferrarin, and Elisa Pelosin. 2022. "Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson’s Disease" Sensors 22, no. 7: 2668. https://doi.org/10.3390/s22072668
APA StyleLencioni, T., Meloni, M., Bowman, T., Marzegan, A., Caronni, A., Carpinella, I., Castagna, A., Gower, V., Ferrarin, M., & Pelosin, E. (2022). Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson’s Disease. Sensors, 22(7), 2668. https://doi.org/10.3390/s22072668