A Systematic Review of the Transthoracic Impedance during Cardiac Defibrillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategies
2.2. Selection of Studies
2.3. Data Extraction and Analysis
- Meta-analysis of all human TTI data with the aim of defining the range of possible TTI in humans including the maximum and minimum values of TTI;
- A detailed analysis of TTI influencing factors with the aim of assessing the relevance of each influencing factor on TTI.
3. Results and Discussion
3.1. TTI an Ohmic Resistance
3.2. Recording Methods for TTI
3.3. Statistical Analysis of TTI Recordings
3.3.1. Analysis of Mean TTI Recordings
3.3.2. Analysis of Adult TTI Data
3.4. Analysis of Influencing Factors
3.4.1. Influence of Waveforms
3.4.2. Influence of Serial Shocks
3.4.3. Influence of Coupling Devices
3.4.4. Influence of Electrode Size
3.4.5. Influence of Electrode Pressure
3.4.6. Influence of Electrode Position
3.4.7. Influence of Age
3.4.8. Influence of Gender
3.4.9. Influence of Body Dimensions and Mass
3.4.10. Influence of Respiration and Lung Volume
3.4.11. Influence of Blood Hemoglobin Saturation
3.4.12. Influences of Pathologies
3.5. Summary of Influencing Factors and Clinical Consequences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TTI | transthoracic impedance |
SD | standard deviation |
Hb | hemoglobin |
AA | anterior-anterior |
AL | anterior-lateral |
AP | anterior-posterior |
vf | ventricular fibrillation |
vt | ventricular tachycardia |
va | ventricular arrhythmia |
af | atrial fibrillation |
aa | atrial arrhythmia |
BSA | body surface area |
PEEP | positive end-expiratory pressure |
BMI | body mass index |
CHF | congestive heart failure |
COPD | chronic obstructive pulmonary disease |
Appendix A
No. | Sources | TTI in Ω | Year | Patients | Age in Years | Weight in kg | Electrodes | Current | Waveform | TTI Measurement Details | Arrythmia | Additional Information | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Lowest | Highest | n | Female | Male | Mean | SD | Mean | SD | Area in cm2 | Type | Position | in kHz | |||||||
1 | [15] | 60.00 | 31.00 | 15.00 | 143.00 | 1981 | 44 | - | - | - | - | 72 | - | 57 | paddles | AL | - | damped sinosoid | calculation | vf | - |
2 | 67.00 | 36.00 | 16.00 | 143.00 | 1981 | 21 | - | - | - | - | - | - | 133 | paddles | AL | - | damped sinosoid | calculation | vf | - | |
3 | 53.00 | 24.00 | 12.00 | 132.00 | 1981 | 23 | - | - | - | - | - | - | 57 | paddles | AL | - | damped sinosoid | calculation | vf | - | |
4 | [65] | 90.00 | 23.00 | 27.00 | 152.00 | 2005 | 102 | - | - | - | - | - | - | - | - | - | - | biphasic | calculation | vf, vt | - |
5 | [66] | 75.00 | 21.00 | 28.00 | 150.00 | 1988 | 347 | - | - | - | - | - | - | - | paddles/pads | - | - | damped sinosoid | monitored by a microprocessor | vf, vt, af | - |
6 | [4] | 65.00 | 14.00 | 46.00 | 85.00 | 1990 | 10 | 2 | 8 | 55 | 20 | - | - | 60 | pads | AL | - | - | calculation | - | - |
7 | [48] | 107.20 | 22.30 | 58.00 | 152.00 | 2006 | 86 | 49 | 39 | 57 | 14 | 76 | 15 | 92 | pads | AL | 32.00 | - | high-frequency impedance | none | - |
8 | 96.60 | 19.20 | 55.00 | 149.00 | 2006 | 86 | 49 | 39 | 57 | 14 | 76 | 15 | 92 | pads | AP | 32.00 | - | high-frequency impedance | none | - | |
9 | [52] | 93.00 | 3.00 | 38.00 | 137.00 | 1991 | 70 | 20 | 50 | 66 | 5 | - | - | 50/113 | pads | AA | 30.00 | - | high-frequency impedance | vf | - |
10 | [33] | 112.00 | 17.00 | - | - | 1989 | 105 | 31 | 74 | 64 | - | - | - | 50 | pads | AA | 30.00 | - | high-frequency impedance | vf | - |
11 | 92.30 | 22.00 | - | - | 1989 | 63 | - | - | 64 | - | - | - | 50/113 | pads | AA | 30.00 | - | high-frequency impedance | vf | - | |
12 | 71.60 | 14.00 | - | - | 1989 | 34 | - | - | 64 | - | - | - | 113 | pads | AA | 30.00 | - | high-frequency impedance | vf | - | |
13 | [47] | 77.50 | 18.40 | - | - | 1999 | 45 | - | - | 66 | 10 | - | - | 106 | pads | AA | 18.00 | - | calculation | af | - |
14 | 73.70 | 18.40 | - | - | 1999 | 45 | - | - | 66 | 10 | - | - | 106 | pads | AP | 18.00 | - | calculation | af | - | |
15 | 75.60 | 18.50 | 43.00 | 133.00 | 1999 | 90 | 30 | 60 | 66 | 10 | - | - | 106 | pads | AA or AP | 18.00 | - | calculation | af | during first shock | |
16 | 68.80 | 15.40 | - | - | 1999 | 90 | 30 | 60 | 66 | 10 | - | - | 106 | pads | AA or AP | 18.00 | - | calculation | af | during last shock | |
17 | [54] | 95.00 | 25.00 | - | - | 1996 | 25 | 25 | - | - | - | 85 | 22 | - | paddles | AA | 31.25 | square wave | high-frequency impedance | - | on breast |
18 | 84.00 | 17.00 | - | - | 1996 | 25 | 25 | - | - | - | 85 | 22 | - | paddles | AA | 31.25 | square wave | high-frequency impedance | - | under breast | |
19 | 83.00 | 20.00 | - | - | 1996 | 25 | 25 | - | - | - | 85 | 22 | - | paddles | AA | 31.25 | square wave | high-frequency impedance | - | lateral to breast | |
20 | [67] | 78.10 | 19.40 | 28.00 | 118.00 | 1984 | 19 | - | - | - | - | - | - | - | paddles | - | 31.00 | - | high-frequency impedance | vf, vt, af | - |
21 | [68] | 74.00 | 29.00 | - | - | 1996 | 100 | - | - | - | - | - | - | 57/113 | paddles/pads | AA or AP | - | damped sinosoid | first shock impedance | vf, vt | - |
22 | [10] | 69.90 | 14.00 | 41.00 | 100.00 | 1989 | 40 | 7 | 33 | 62 | - | - | - | 113 | pads | AA | 30.00 | - | high-frequency impedance | vf, aa | pre-gelled |
23 | 65.10 | 15.90 | 38.00 | 97.00 | 1989 | 41 | 12 | 29 | 63 | - | - | - | 113 | pads | AA | 30.00 | - | high-frequency impedance | vf | pre-gelled | |
24 | [8] | - | - | 55.00 | 125.00 | 2001 | 15 | - | - | 59 | 9 | 81 | 13 | 65 | paddles | - | 50.00 | biphasic | high-frequency impedance | af | - |
25 | [28] | 75.00 | 21.00 | 28.00 | 150.00 | 1984 | 68 | - | - | - | - | - | - | 50/113 | pads | AA or AP | - | - | - | vt,vf, af | - |
26 | 79.00 | 26.00 | - | - | 1984 | 68 | - | - | - | - | - | - | 50/113 | pads | AA | - | - | - | vt,vf, af | - | |
27 | 73.00 | 16.00 | - | - | 1984 | 68 | - | - | - | - | - | - | 50/113 | pads | AP | - | - | - | vt,vf, af | - | |
28 | [46] | 77.00 | 18.00 | - | - | 1992 | 17 | - | - | - | - | - | - | - | paddles | AA | 31.25 | square wave | high-frequency impedance | none | without sternotomy |
29 | 59.00 | 17.00 | - | - | 1992 | 17 | - | - | - | - | - | - | - | paddles | AA | 31.25 | square wave | high-frequency impedance | none | with sternotomy | |
30 | [42] | 82.00 | 24.70 | - | - | 1998 | 20 | 10 | 10 | 42 | 18 | - | - | 78 | pads | AA | 31.25 | square wave | high-frequency impedance | none | - |
31 | 71.20 | 23.50 | - | - | 1998 | 20 | 10 | 10 | 42 | 18 | - | - | 78 | pads | AP | 31.25 | square wave | high-frequency impedance | none | - | |
32 | 77.00 | 24.70 | - | - | 1998 | 20 | 10 | 10 | 42 | 18 | - | - | 78 | pads | AP | 31.25 | square wave | high-frequency impedance | none | - | |
33 | [41] | 81.48 | 13.34 | - | - | 2003 | 20 | 7 | 13 | - | - | - | - | 90 | paddles | AA (trans.) | - | - | modified defibrillator | - | at end-expiration with 6 kg force |
34 | 77.58 | 13.25 | - | - | 2003 | 20 | 7 | 13 | - | - | - | - | 90 | paddles | AA (long.) | - | - | modified defibrillator | - | at end-expiration with 6 kg force | |
35 | [37] | 70.50 | 1.00 | - | - | 2004 | 35 | 7 | 28 | - | - | - | - | 85 | paddles | AA | - | - | using Labview (National Instruments) | - | on gel pads, with variable lung volume |
36 | 72.25 | 1.00 | - | - | 2004 | 35 | 7 | 28 | - | - | - | - | 85 | paddles | AA | - | - | using Labview (National Instruments) | - | on gel pads, with fixed lung volume | |
37 | [22] | 92.20 | - | 52.00 | 126.00 | 2008 | 58 | 12 | 46 | 68 | - | 85 | - | - | pads | AA | - | biphasic | first shock impedance | af | - |
38 | [11] | 86.00 | - | 73.00 | 103.00 | 2009 | 467 | - | - | - | - | - | - | - | pads | - | - | biphasic | shock impedance | vf | - |
39 | [56] | 65.70 | 6.90 | - | - | 1998 | 12 | 6 | 6 | 30 | - | - | - | - | pads | AA | 30.00 | damped sinosoid | Bodystat MultiScan 5000 | none | at end-expiration |
40 | [29] | 68.20 | 16.10 | - | - | 1998 | 40 | 0 | 40 | 32 | - | - | - | 82 | paddles | AA | 30.00 | damped sinosoid | Bodystat MultiScan 5000 | none | at end-expiration |
41 | 62.80 | 13.20 | - | - | 1998 | 40 | 0 | 40 | 33 | - | - | - | 99 | paddles | AA | 30.00 | damped sinosoid | Bodystat MultiScan 5000 | none | at end-expiration | |
42 | 64.60 | 14.30 | - | - | 1998 | 40 | 0 | 40 | 34 | - | - | - | 85 | paddles | AA | 30.00 | damped sinosoid | Bodystat MultiScan 5000 | none | at end-expiration | |
43 | 95.60 | 22.30 | - | - | 1998 | 40 | 0 | 40 | 35 | - | - | - | 64 | paddles | AA | 30.00 | damped sinosoid | Bodystat MultiScan 5000 | none | at end-expiration | |
44 | [53] | 91.30 | 15.80 | 63.00 | 137.70 | 2001 | 45 | 45 | 0 | 32 | - | 82 | - | - | pads | AA | 30.00 | monophasic | Bodystat MultiScan 5000 | none | 2 weeks before estimated date of delivery |
45 | 91.60 | 11.50 | 69.30 | 118.30 | 2001 | 42 | 42 | 0 | 32 | - | 71 | - | - | pads | AA | 30.00 | monophasic | Bodystat MultiScan 5000 | none | 6–8 weeks after delivery | |
46 | [24] | 57.70 | 11.40 | - | - | 2009 | 222 | 73 | 149 | 73 | 11 | 75 | 13 | 78 | pads | AP | 5.00 | biphasic | calculation | af | first shock |
47 | 54.10 | 10.80 | - | - | 2009 | 222 | 73 | 149 | 73 | 11 | 75 | 13 | 78 | pads | AP | 5.00 | biphasic | calculation | af | last shock | |
48 | [18] | 91.00 | 13.00 | - | - | 2002 | 107 | 34 | 73 | 65 | 13 | 88 | 24 | 167 | card. electrodes | AP | - | monophasic | shock impedance | af | failed cardioversion in ≤4 shocks |
49 | 79.00 | 19.00 | - | - | 2002 | 107 | 34 | 73 | 65 | 13 | 88 | 24 | 167 | card. electrodes | AP | - | monophasic | shock impedance | af | no failed cardioversion | |
50 | 76.00 | 6.00 | - | - | 2002 | 96 | 27 | 69 | 65 | 14 | 87 | 19 | 167 | card. electrodes | AP | - | biphasic | shock impedance | af | failed cardioversion in ≤4 shocks | |
51 | 76.00 | 18.00 | - | - | 2002 | 96 | 27 | 69 | 65 | 14 | 87 | 19 | 167 | card. electrodes | AP | - | biphasic | shock impedance | af | no failed cardioversion | |
52 | [26] | 104.00 | 27.00 | - | - | 2008 | 467 | 89 | 378 | 63 | 14 | - | - | - | paddles | - | - | biphasic | high-frequency impedance | vf | all |
53 | 109.00 | 27.00 | - | - | 2008 | 89 | 89 | 0 | - | - | - | - | - | paddles | - | - | biphasic | high-frequency impedance | vf | only women | |
54 | 103.00 | 27.00 | - | - | 2008 | 378 | 0 | 378 | - | - | - | - | - | paddles | - | - | bipasic | high-frequency impedance | vf | only men | |
55 | 104.00 | 26.00 | - | - | 2008 | 467 | 89 | 378 | 63 | 14 | - | - | - | paddles | - | - | biphasic | high-frequency impedance | vf | 1991 successful shocks | |
56 | 102.00 | 22.00 | - | - | 2008 | 467 | 89 | 378 | 63 | 14 | - | - | - | paddles | - | - | biphasic | high-frequency impedance | vf | 536 failed shocks | |
57 | [14] | 58.00 | 10.30 | - | - | 1997 | 10 | 5 | 5 | - | - | - | - | - | paddles | AA | 31.25 | square wave | high-frequency impedance | none | - |
58 | 51.00 | 10.90 | - | - | 1997 | 10 | 5 | 5 | - | - | - | - | - | paddles | AA | 31.25 | square wave | high-frequency impedance | none | - | |
59 | 36.00 | 7.60 | - | - | 1997 | 10 | 5 | 5 | - | - | - | - | - | paddles | AA | 31.25 | square wave | high-frequency impedance | none | with gel smear | |
60 | 51.00 | 8.00 | - | - | 1997 | 10 | 5 | 5 | - | - | - | - | - | paddles | AA | 31.25 | square wave | high-frequency impedance | none | with gel smear | |
61 | [2] | 57.70 | 12.30 | 37.00 | 89.00 | 2006 | 80 | 25 | 55 | 73 | 9 | 74 | 13 | 78 | pads | AP | 5.00 | biphasic | shock impedance | af | - |
62 | [44] | 73.80 | 16.80 | - | - | 2003 | 31 | 11 | 20 | 59 | 15 | 68 | 115 | - | pads | AL | - | damped sinosoid | modified Hewlett-Packard defibrillator | af | - |
63 | 65.50 | 14.50 | - | - | 2003 | 39 | 12 | 27 | 58 | 10 | 67 | 16 | - | pads | AP | - | damped sinosoid | modified Hewlett-Packard defibrillator | af | - | |
64 | [17] | 78.00 | 16.00 | 41.00 | 124.00 | 1999 | 88 | 29 | 59 | 65 | 12 | 89 | 21 | 78/113 | gel pads | AP | - | biphasic | shock impedance | af | - |
65 | 76.00 | 17.00 | 40.00 | 112.00 | 1999 | 77 | 21 | 56 | 66 | 12 | 93 | 24 | 78/113 | gel pads | AP | - | damped sinosoid | shock impedance | af | - | |
66 | [21] | 90.00 | 21.00 | - | - | 2005 | 150 | 55 | 95 | 67 | 10 | - | - | - | pads | AA | - | biphasic | shock impedance | af | - |
67 | 85.00 | 18.00 | - | - | 2005 | 157 | 57 | 100 | 66 | 14 | - | - | - | pads | AP | - | biphasic | shock impedance | af | - | |
68 | [45] | 69.30 | 16.00 | 39.00 | 131.00 | 1990 | 80 | 31 | 49 | 62 | - | - | - | 50/113 | pads | AP or AA | 30.00 | - | - | af | - |
69 | 66.70 | 16.00 | - | - | 1990 | 57 | - | - | - | - | - | - | 50/113 | pads | AP | 30.00 | - | - | af | - | |
70 | 75.40 | 13.00 | - | - | 1990 | 23 | - | - | - | - | - | - | 50/113 | pads | AA | 30.00 | - | - | af | - | |
71 | [58] | 59.20 | 8.10 | - | - | 1998 | 10 | 2 | 8 | - | - | - | - | - | pads | AA | 30.00 | sinosoid | high-frequency impedance | none | Air |
72 | 60.40 | 7.90 | - | - | 1999 | 10 | 2 | 8 | - | - | - | - | - | pads | AA | 30.00 | sinosoid | high-frequency impedance | none | 100% O2 | |
73 | 60.60 | 7.80 | - | - | 2000 | 10 | 2 | 8 | - | - | - | - | - | pads | AA | 30.00 | sinosoid | high-frequency impedance | none | 30% O2 + 70% N2O | |
74 | 60.00 | 8.80 | - | - | 2001 | 10 | 2 | 8 | - | - | - | - | - | pads | AA | 30.00 | sinosoid | high-frequency impedance | none | 30% O + 70% Helium | |
75 | [30] | 75.80 | 14.10 | - | - | 2004 | 21 | 7 | 14 | 70 | - | 80 | - | 82 | paddles | AA | 30.00 | sinosoid | high-frequency impedance | af | - |
76 | 92.60 | 16.99 | - | - | 2004 | 21 | 7 | 14 | 70 | - | 80 | - | 80 | pads | AA | 30.00 | sinosoid | high-frequency impedance | af | - | |
77 | 66.50 | 13.90 | - | - | 2004 | 21 | 7 | 14 | 70 | - | 80 | - | 82 | paddles | AP | 30.00 | sinosoid | high-frequency impedance | af | - | |
78 | 92.10 | 23.30 | - | - | 2004 | 21 | 7 | 14 | 70 | - | 80 | - | 80 | pads | AP | 30.00 | sinosoid | high-frequency impedance | af | - | |
79 | [9] | 162.00 | 11.00 | - | - | 2000 | 9 | 0 | 9 | - | - | - | - | 164 or 192 | pads | AA | 31.25 | square wave | high-frequency impedance | none | hirsute patients |
80 | 103.00 | 6.00 | - | - | 2000 | 11 | 5 | 6 | - | - | - | - | 164 or 192 | pads | AA | 31.25 | square wave | high-frequency impedance | none | non -hirsute patients | |
81 | 105.00 | 3.00 | - | - | 2000 | 9 | 0 | 9 | - | - | - | - | 164 or 192 | pads | AA | 31.25 | square wave | high-frequency impedance | none | shaved hirsute group | |
82 | [40] | 78.50 | 6.40 | - | - | 2003 | 15 | - | - | - | - | - | - | 143 | paddles | AA | - | - | modified defibrillator | none | hirsute patients at 8 kgf |
83 | 71.50 | 5.40 | - | - | 2003 | 15 | - | - | - | - | - | - | 143 | paddles | AA | - | - | modified defibrillator | none | hirsute patients at 8 kgf, after shaving | |
84 | 73.20 | 4.90 | - | - | 2003 | 25 | - | - | - | - | - | - | 143 | paddles | AA | - | - | modified defibrillator | none | non -hirsute patients at 8 kgf | |
85 | 72.50 | 5.10 | - | - | 2003 | 25 | - | - | - | - | - | - | 143 | paddles | AA | - | - | modified defibrillator | none | non -hirsute patients at 8 kgf, after shaving | |
86 | 65.10 | 4.80 | - | - | 2003 | 10 | - | - | - | - | - | - | 143 | paddles | AA | - | - | modified defibrillator | none | non -hirsute patients at 8 kgf, control group | |
87 | [23] | 54.00 | 4.00 | - | - | 1988 | 37 | - | - | - | - | - | - | - | pads | AA | 31.24 | square wave | high-frequency impedance | aa, va, none | salt-containing coupling agent |
88 | 65.00 | 5.00 | - | - | 1988 | 37 | - | - | - | - | - | - | - | pads | AA | 31.24 | square wave | high-frequency impedance | aa, va, none | salt-free coupling agent | |
89 | 160.00 | 18.00 | - | - | 1988 | 37 | - | - | - | - | - | - | - | pads | AA | 31.24 | square wave | high-frequency impedance | aa, va, none | no coupling agent | |
90 | [16] | 108.00 | 24.00 | 61.00 | 212.00 | 1988 | 37 | - | - | - | - | - | - | 21 | paddles | - | - | - | high-frequency impedance | none | pediatric data, children 1.5–15 years |
91 | 57.00 | 11.00 | 29.00 | 101.00 | 1988 | 37 | - | - | - | - | - | - | 83 | paddles | - | - | - | high-frequency impedance | none | pediatric data, children 1.5–15 years | |
92 | 94.00 | 17.00 | 74.00 | 124.00 | 1988 | 10 | - | - | - | - | - | - | 21 | paddles | - | - | - | high-frequency impedance | none | pediatric data, infants 6 weeks to 9 months | |
93 | [69] | 56.80 | 23.40 | 27.70 | 94.50 | 2010 | 5 | 3 | 2 | 14 | 5 | 47 | 7 | - | pads | AA | - | biphasic | - | cardiac arrest | pediatric data, 0.1 pre-shock and post-shock |
94 | 55.20 | 22.20 | 28.30 | 93.10 | 2010 | 5 | 3 | 2 | 14 | 5 | 47 | 7 | - | pads | AA | - | biphasic | - | cardiac arrest | pediatric data, 0.1 s post-shock baseline | |
95 | [5] | 106.80 | - | - | - | 2003 | 12 | - | - | 1 | - | 7 | - | 16 | paddles | AA | - | - | using Labview (National Instruments) | - | pediatric data, on gel pads |
96 | 53.30 | - | - | - | 2003 | 68 | - | - | 3 | - | 16 | - | 85 | paddles | AA | - | - | using Labview (National Instruments) | - | pediatric data, on gel pads | |
97 | 69.30 | - | - | - | 2003 | 68 | - | - | 13 | - | 44 | - | 85 | paddles | AA | - | - | using Labview (National Instruments) | - | pediatric data, on gel pads | |
98 | [12] | 148.00 | 23.00 | - | - | 1995 | 24 | - | - | 4 | 3 | 6 | 16 | 13 | pads | AA | 31.00 | square wave | high-frequency impedance | none | pediatric data |
99 | 49.00 | 9.00 | - | - | 1995 | 9 | - | - | 4 | 3 | - | - | 79 | pads | AA | 31.00 | square wave | high-frequency impedance | none | pediatric data | |
100 | [70] | 73.60 | 20.70 | 26.00 | 146.00 | 2017 | 593 | - | - | - | - | - | - | - | - | - | - | biphasic | Philips HeartStart XL/ HeartStart MRx defibrillators | atrial fibrillation | first shock TTI |
101 | 76.60 | 22.60 | 26.00 | 146.00 | 2017 | 110 | - | - | - | - | - | - | - | - | - | - | biphasic | Philips HeartStart XL/ HeartStart MRx defibrillators | atrial flutter | first shock TTI | |
102 | [71] | 74.00 | 18.00 | - | - | 2018 | 500 | 129 | 371 | 66 | 11 | 95 | 24 | - | - | - | - | biphasic | LIFEPAK 20e/ HeartStart XL | af | first shock TTI |
103 | 74.00 | 18.00 | - | - | 2018 | 500 | 129 | 371 | 66 | 11 | 95 | 24 | - | - | - | - | biphasic | LIFEPAK 20e/ HeartStart XL | af | maximum | |
104 | 70.00 | 16.00 | - | - | 2018 | 389 | 100 | 289 | 66 | 11 | 96 | 25 | - | paddles/pads | AP | - | biphasic | LIFEPAK 20e/ HeartStart XL | af | Using OAFCP, first shock TTI | |
105 | 71.00 | 16.00 | - | - | 2018 | 389 | 100 | 289 | 66 | 11 | 96 | 25 | - | paddles/pads | AP/AL | - | biphasic | LIFEPAK 20e/ HeartStart XL | af | Using OAFCP, maximum | |
106 | [72] | 79.00 | 4.40 | 73.00 | 84.00 | 2020 | 5 | 0 | 5 | 54 | 11 | - | - | - | paddles | AL | - | biphasic | Standard direct-current ec | af | - |
107 | [51] | 64.00 | 11.00 | - | - | 2021 | 466 | 90 | 376 | 60 | 11 | - | - | - | pads | AP | - | biphasic | HeartStart MRx, after energy delivery | af, at, aa | - |
108 | 63.00 | 11.00 | - | - | 2021 | 376 | 0 | 376 | - | - | - | - | - | pads | AP | - | biphasic | HeartStart MRx, after energy delivery | af, at, aa | male | |
109 | 77.00 | 15.00 | - | - | 2021 | 90 | 90 | 0 | - | - | - | - | - | pads | AP | - | biphasic | HeartStart MRx, after energy delivery | af, at, aa | female | |
110 | [73] | 78.00 | 21.40 | 32.00 | 154.00 | 2017 | 92 | 19 | 73 | 64 | 17 | - | - | - | pads | - | 20.00 | biphasic | calculated (LIFEPAK 12) | vf | no return of spontaneous circulation |
111 | 73.80 | 20.40 | 32.00 | 154.00 | 2017 | 105 | 33 | 72 | 63 | 14 | - | - | - | pads | - | 20.00 | biphasic | calculated (LIFEPAK 12) | vf | return of spontaneous circulation | |
112 | [36] | 81.40 | 17.6 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AL | - | - | calibrated impedance circuit | none | shaved hirsute, at rest |
113 | 85.60 | 16.50 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AL | - | - | calibrated impedance circuit | none | shaved hirsute, at inspiration | |
114 | 79.60 | 19.20 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AL | - | - | calibrated impedance circuit | none | shaved hirsute, at end-expiration | |
115 | 74.90 | 17.30 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AL | - | - | calibrated impedance circuit | none | shaved hirsute, applied force (6-15 kgf) | |
116 | 70.90 | 16.6 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AP | - | - | calibrated impedance circuit | none | shaved hirsute, at rest | |
117 | 73.90 | 16.20 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AP | - | - | calibrated impedance circuit | none | shaved hirsute, at inspiration | |
118 | 70.00 | 16.40 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AP | - | - | calibrated impedance circuit | none | shaved hirsute, at end-expiration | |
119 | 67.10 | 14.80 | - | - | 2016 | 11 | 0 | 11 | - | - | - | - | - | pads | AP | - | - | calibrated impedance circuit | none | shaved hirsute, applied force (6–15 kgf) |
References
- KenKnight, B.H.; Eyuboglu, B.M.; Ideker, R.E. Impedance to defibrillation countershock: Does an optimal impedance exist? PACE-Pacing Clin. Electrophysiol. 1995, 18, 2068–2087. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, S.; Boni, N.; Padeletti, M.; Gori, F.; Boncinelli, L.; Valoti, P.; Baldasseroni, S.; Bari, M.D.; Masotti, G.; Padeletti, L.; et al. Determinants of Thoracic Electrical Impedance in External Electrical Cardioversion of Atrial Fibrillation. Am. J. Cardiol. 2006, 98, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Sado, D.M. How good is your defibrillation technique? J. R. Soc. Med. 2005, 98, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerman, B.B.; Deale, O.C. Relation Between Transcardiac and Transthoracic Current During Defibrillation in Humans. Circ. Res. 1990, 67, 1420–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, C.D.; Bennetts, S.H.; Petley, G.W.; Clewlow, F. What is the optimal paddle force during paediatric external defibrillation? Resuscitation 2003, 59, 83–88. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Hatib, F.A.; Trendafilova, E.; Daskalov, I. Transthoracic electrical impedance during external defibrillation: Comparison of measured and modelled waveforms. Physiol. Meas. 2000, 21, 145. [Google Scholar] [CrossRef]
- Krasteva, V.; Hatib, F.A.; Trendafilova, E.; Daskalov, I. Possibilities for predictive measurement of the transthoracic impedance in defibrillation. J. Med. Eng. Technol. 2001, 25, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Bissing, J.W.; Kerber, R.E. Effect of shaving the chest of hirsute subjects on transthoracic impedance to self-adhesive defibrillation electrode pads. Am. J. Cardiol. 2000, 86, 587–589. [Google Scholar] [CrossRef]
- Dalzell, G.W.; Cunningham, S.R.; Anderson, J.; Adgey, A.A. Initial experience with a microprocessor controlled current based defibrillator. Heart 1989, 61, 502–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, R.G.; Koster, R.W.; Sun, C.; Moffat, G.; Barger, J.; Dodson, P.P.; Chapman, F.W. Defibrillation probability and impedance change between shocks during resuscitation from out-of-hospital cardiac arrest. Resuscitation 2009, 80, 773–777. [Google Scholar] [CrossRef]
- Samson, R.A.; Atkins, D.L.; Kerber, R.E. Optimal size of self-adhesive preapplied electrode pads in pediatric defibrillation. Am. J. Cardiol. 1995, 75, 544–545. [Google Scholar] [CrossRef]
- Link, M.S.; Atkins, D.L.; Passman, R.S.; Halperin, H.R.; Samson, R.A.; White, R.D.; Cudnik, M.T.; Berg, M.D.; Kudenchuk, P.J.; Kerber, R.E. Part 6: Electrical therapies: Automated external defibrillators, defibrillation, cardioversion, and pacing: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122, S706–S719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caterine, M.R.; Yoerger, D.M.; Spencer, K.T.; Miller, S.G.; Kerber, R.E. Effect of Electrode Position and Gel-Application Technique on Predicted Transcardiac Current During Transthoracic Defibrillation. Ann. Emerg. Med. 1997, 29, 588–595. [Google Scholar] [CrossRef]
- Kerber, R.E.; Grayzel, J.; Hoyt, R.; Marcus, M.; Kennedy, J. Transthoracic resistance in human defibrillation. Influence of body weight, chest size, serial shocks, paddle size and paddle contact pressure. Circulation 1981, 63, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, D.L.; Sirna, S.; Kieso, R. Pediatric defibrillation: Importance of paddle size in determining transthoracic impedance. J. Crit. Care 1989, 4, 319. [Google Scholar] [CrossRef]
- Mittal, S.; Ayati, S.; Stein, K.M.; Schwartzman, D.; Cavlovich, D.; Tchou, P.J.; Markowitz, S.M.; Slotwiner, D.J.; Scheiner, M.A.; Lerman, B.B. Transthoracic cardioversion of atrial fibrillation: Comparison of rectilinear biphasic versus damped sine wave monophasic shocks. Circulation 2000, 101, 1282–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, R.L.; Kerber, R.E.; Russell, J.K.; Trouton, T.; Waktare, J.; Gallik, D.; Olgin, J.E.; Ricard, P.; Dalzell, G.W.; Reddy, R.; et al. Biphasic versus monophasic shock waveform for conversion of atrial fibrillation: The results of an international randomized, double-blind multicenter trial. J. Am. Coll. Cardiol. 2002, 39, 1956–1963. [Google Scholar] [CrossRef] [Green Version]
- Niemann, J.T.; Burian, D.; Garner, D.; Lewis, R.J. Transthoracic monophasic and biphasic defibrillation in a swine model: A comparison of efficacy, ST segment changes, and postshock hemodynamics. Resuscitation 2000, 47, 51–58. [Google Scholar] [CrossRef]
- Pantridge, J.F.; Adgey, A.A.J.; Webb, S.W.; Anderson, J. Electrical Requirements For Ventricular Defibrillation. Br. Med. J. 1975, 2, 313–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, S.; McCarty, D.; McClelland, A.; Owens, C.; Trouton, T.; Harbinson, M.; O’Mullan, S.; McAllister, A.; McClements, B.; Stevenson, M.; et al. Impedance compensated biphasic waveforms for transthoracic cardioversion of atrial fibrillation: A multi-centre comparison of antero-apical and antero-posterior pad positions. Eur. Heart J. 2005, 26, 1298–1302. [Google Scholar] [CrossRef] [PubMed]
- Deakin, C.D.; Ambler, J.J.S.; Shaw, S. Changes in transthoracic impedance during sequential biphasic defibrillation. Resuscitation 2008, 78, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Sirna, S.J.; Sirna, S.J.; Ferguson, D.W.; Ferguson, D.W.; Charbonnier, F.; Charbonnier, F.; Kerber, R.E.; Kerber, R.E. Factors affecting transthoracic impedance during electrical cardioversion. Am. J. Cardiol. 1988, 62, 1048–1052. [Google Scholar] [CrossRef]
- Fumagalli, S.; Tarantini, F.; Caldi, F.; Makhanian, Y.; Padeletti, M.; Boncinelli, L.; Valoti, P.; Serio, C.D.; Pellerito, S.; Padeletti, L.; et al. Multiple shocks affect thoracic electrical impedance during external cardioversion of atrial fibrillation. PACE-Pacing Clin. Electrophysiol. 2009, 32, 371–377. [Google Scholar] [CrossRef]
- Niemann, J.T.; Garner, D.; Lewis, R.J. Transthoracic impedance does not decrease with rapidly repeated countershocks in a swine cardiac arrest model. Resuscitation 2003, 56, 91–95. [Google Scholar] [CrossRef]
- Koster, R.W.; Walker, R.G.; Chapman, F.W. Recurrent ventricular fibrillation during advanced life support care of patients with prehospital cardiac arrest. Resuscitation 2008, 78, 252–257. [Google Scholar] [CrossRef]
- Callaway, C.W.; Donnino, M.W.; Fink, E.L.; Geocadin, R.G.; Golan, E.; Kern, K.B.; Leary, M.; Meurer, W.J.; Peberdy, M.A.; Thompson, T.M.; et al. Part 8: Post–Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S465–S482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerber, R.E.; Martins, J.B.; Kelly, K.J.; Ferguson, D.W.; Kouba, C.; Jensen, S.R.; Newman, B.; Parke, J.D.; Kieso, R.; Melton, J. Self-adhesive preapplied electrode pads for defibrillation and cardioversion. J. Am. Coll. Cardiol. 1984, 3, 815. [Google Scholar] [CrossRef] [Green Version]
- Deakin, C.D.; McLaren, R.M.; Petley, G.W.; Clewlow, F.; Dalrymple-Hay, M.J.R. A comparison of transthoracic impedance using standard defibrillation paddles and self-adhesive defibrillation pads. Resuscitation 1998, 39, 43–46. [Google Scholar] [CrossRef]
- Dodd, T.E.L.; Deakin, C.D.; Petley, G.W.; Clewlow, F. External defibrillation in the left lateral position—A comparison of manual paddles with self-adhesive pads. Resuscitation 2004, 63, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Aylward, P.E.; Kieso, R.; Hite, P.; Charbonnier, F.; Kerber, R.E. Defibrillator electrode-chest wall coupling agents: Influence on transthoracic impedance and shock success. J. Am. Coll. Cardiol. 1985, 6, 682–686. [Google Scholar] [CrossRef] [Green Version]
- Geddes, L.A.; Tacker, W.A.; Rosborough, J.P.; Moore, A.G.; Cabler, P.S. Electrical dose for ventricular defibrillation of large and small animals using precordial electrodes. J. Clin. Investig. 1974, 53, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Dalzell, G.W.N.; Cunningham, S.R.; Anderson, J.; Adgey, A.A.J. Electrode pad size, transthoracic impedance and success of external ventricular defibrillation. Am. J. Cardiol. 1989, 64, 741–744. [Google Scholar] [CrossRef]
- Hoyt, R.; Grayzel, J.; Kerber, R.E. Determinants of intracardiac current in defibrillation. Experimental studies in dogs. Circulation 1981, 64, 818–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, C.D.; Sado, D.M.; Petley, G.W.; Clewlow, F. Determining the optimal paddle force for external defibrillation. Am. J. Cardiol. 2002, 90, 812–813. [Google Scholar] [CrossRef]
- Ramirez, F.D.; Fiset, S.L.; Cleland, M.J.; Zakutney, T.J.; Nery, P.B.; Nair, G.M.; Redpath, C.J.; Sadek, M.M.; Birnie, D.H. Effect of Applying Force to Self-Adhesive Electrodes on Transthoracic Impedance: Implications for Electrical Cardioversion. PACE-Pacing Clin. Electrophysiol. 2016, 39, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Deakin, C.D.; Sado, D.M.; Petley, G.W.; Clewlow, F. Differential contribution of skin impedance and thoracic volume to transthoracic impedance during external defibrillation. Resuscitation 2004, 60, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Persse, D.E.; Dzwonczyk, R.; Brown, C.G. Effect of Application of Force to Self-Adhesive Defibrillator Pads on Transthoracic Electrical Impedance and Countershock Success. Ann. Emerg. Med. 1999, 34, 129–133. [Google Scholar] [CrossRef]
- Cohen, T.J.; Ibrahim, B.; Denier, D.; Haji, A.; Quan, W. Active compression cardioversion for refractory atrial fibrillation. Am. J. Cardiol. 1997, 80, 354–355. [Google Scholar] [CrossRef]
- Sado, D.M.; Deakin, C.D.; Petley, G.W.; Clewlow, F. Comparison of the effects of removal of chest hair with not doing so before external defibrillation on transthoracic impedance. Am. J. Cardiol. 2004, 93, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Deakin, C.D.; Sado, D.M.; Petley, G.W.; Clewlow, F. Is the orientation of the apical defibrillation paddle of importance during manual external defibrillation? Resuscitation 2003, 56, 15–18. [Google Scholar] [CrossRef]
- Garcia, L.A.; Kerber, R.E. Transthoracic defibrillation: Does electrode adhesive pad position alter transthoracic impedance? Resuscitation 1998, 37, 139–143. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Shen, D.; Zhen, Y.; Tao, A.; Zhang, G. Anterior-posterior versus anterior-lateral electrode position for external electrical cardioversion of atrial fibrillation: A meta-analysis of randomized controlled trials. Arch. Cardiovasc. Dis. 2014, 107, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Guo, G.B.F. External Cardioversion in Patients With Persistent Atrial Fibrillation A Reappraisal of the Effects of Electrode Pad Position and Transthoracic Impedance on Cardioversion Success. Jpn. Heart J. 2003, 44, 921–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalzell, G.; Anderson, J.; Adgey, A. Factors Determining Success and Energy Requirements for Cardioversion of Atrial Fibrillation: Revised Version. QJM Int. J. Med. 1991, 78, 85–95. [Google Scholar] [CrossRef]
- Kerber, R.E.; Vance, S.; Schomer, S.J.; Mariano, D.J.; Charbonnier, F. Transthoracic defibrillation: Effect of sternotomy on chest impedance. J. Am. Coll. Cardiol. 1992, 20, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Mathew, T.P.; Moore, A.; McIntyre, M.; Harbinson, M.T.; Campbell, N.P.S.; Adgey, A.A.J.; Dalzell, G.W.N. Randomised comparison of electrode positions for cardioversion of atrial fibrillation. Heart 1999, 81, 576–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasteva, V.; Matveev, M.; Mudrov, N.; Prokopova, R. Transthoracic impedance study with large self-adhesive electrodes in two conventional positions for defibrillation. Physiol. Meas. 2006, 27, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Atkins, D.L.; Kerber, R.E. Pediatric defibrillation: Current flow is improved by using ’adult’ electrode paddles. Pediatrics 1994, 94, 90–93. [Google Scholar] [CrossRef]
- Samson, R.A.; Berg, R.A.; Bingham, R.; Biarent, D.; Coovadia, A.; Hazinski, M.F.; Hickey, R.W.; Nadkarni, V.; Nichol, G.; Tibballs, J.; et al. Use of automated external defibrillators for children: An update: An advisory statement from the Pediatric Advanced Life Support Task Force, International Liaison committee on resuscitation. Circulation 2003, 107, 3250–3255. [Google Scholar] [CrossRef] [Green Version]
- Roh, S.Y.; Ahn, J.; Lee, K.N.; Baek, Y.S.; Kim, D.H.; Lee, D.I.; Shim, J.; Choi, J.I.; Kim, Y.H. The impact of personal thoracic impedance on electrical cardioversion in patients with atrial arrhythmias. Medicina 2021, 57, 618. [Google Scholar] [CrossRef] [PubMed]
- Dalzell, G.W.; Adgey, A.A. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation. Heart 1991, 65, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanson, J.; Elcock, D.; Williams, M.; Deakin, C.D. Do physiological changes in pregnancy change defibrillation energy requirements? Br. J. Anaesth. 2001, 87, 237–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagan-Carlo, L.A.; Spencer, K.T.; Robertson, C.E.; Dengler, A.; Birkett, C.; Kerber, R.E. Transthoracic defibrillation: Importance of avoiding electrode placement directly on the female breast. J. Am. Coll. Cardiol. 1996, 27, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Szymkiewicz, S.J.; Klein, H.U. The impact of body mass index on the wearable cardioverter defibrillator shock efficacy and patient wear time. Am. Heart J. 2017, 186. [Google Scholar] [CrossRef] [PubMed]
- Deakin, C.D.; McLaren, R.M.; Petley, G.W.; Clewlow, F.; Dalrymple-Hay, M.J.R. Effects of positive end-expiratory pressure on transthoracic impedance—Implications for defibrillation. Resuscitation 1998, 37, 9–12. [Google Scholar] [CrossRef]
- Kim, C.; Fuglestad, M.; Richert, M.; Shen, W.; Johnson, B. Influence of lung volume, fluid and capillary recruitment during positional changes and exercise on thoracic impedance in heart failure. Respir. Physiol. Neurobiol. 2014, 202, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, C.D.; McLaren, R.M.; Pack, L.S.; Petley, G.W.; Clewlow, F.; Dalrymple-Hay, M.J.R. Effects of respiratory gas composition on transthoracic impedance. Resuscitation 1998, 38, 193–195. [Google Scholar] [CrossRef]
- Berve, P.O.; Irusta, U.; Kramer-Johansen, J.; Skålhegg, T.; Kongsgård, H.W.; Brunborg, C.; Aramendi, E.; Wik, L. Transthoracic impedance measured with defibrillator pads—New interpretations of signal change induced by ventilations. J. Clin. Med. 2019, 8, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtczak, J. Contractures and Increase in Internal Longitudinal Resistance of Cow Ventricular Muscle Induced by Hypoxia. Circ. Res. 1979, 44, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Fein, A.; Grossman, R.F.; Jones, J.G.; Goodman, P.C.; Murray, J.F. Evaluation of transthoracic electrical impedance in the diagnosis of pulmonary edema. Circulation 1979, 60, 1156–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, W.F.; Albert, N.M.; White, R.D.; Emerman, C.L. Bioimpedance Monitoring: Better Than Chest X-Ray for Predicting Abnormal Pulmonary Fluid? Congest. Heart Fail. 2000, 6, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Rhee, B.; Zhang, Y.; Boddicker, K.; Davies, L.; Kerber, R. Effect of hypothermia on transthoracic defibrillation in a swine model. Resuscitation 2005, 65, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Savino, G.V.; Ruiz, E.D.V.; Valentinuzzi, M.E. Transventricular Impedance during Fibrillation. IEEE Trans. Biomed. Eng. 1983, BME-30, 364–367. [Google Scholar] [CrossRef] [PubMed]
- White, R.D.; Blackwell, T.H.; Russell, J.K.; Snyder, D.E.; Jorgenson, D.B. Transthoracic impedance does not affect defibrillation, resuscitation or survival in patients with out-of-hospital cardiac arrest treated with a non-escalating biphasic waveform defibrillator. Resuscitation 2005, 64, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kerber, R.E.; Martins, J.B.; Kienzle, M.G.; Constantin, L.; Olshansky, B.; Hopson, R.; Charbonnier, F. Energy, current, and success in defibrillation and cardioversion: Clinical studies using an automated impedance-based method of energy adjustment. Circulation 1988, 77, 1038–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerber, R.E.; Kouba, C.; Martins, J.; Kelly, K.; Low, R.; Hoyt, R.; Ferguson, D.; Bailey, L.; Bennett, P.; Charbonnier, F. Advance prediction of transthoracic impedance in human defibrillation and cardioversion: Importance of impedance in determining the success of low-energy shocks. Circulation 1984, 70, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerber, R.E.; Kieso, R.A.; Kienzle, M.G.; Olshansky, B.; Waldo, A.L.; Carlson, M.D.; Wilber, D.J.; Aschoff, A.M.; Birger, S.; Charbonnier, F. Current-based transthoracic defibrillation. Am. J. Cardiol. 1996, 78, 1113–1118. [Google Scholar] [CrossRef]
- Niles, D.E.; Nishisaki, A.; Sutton, R.M.; Brunner, S.; Stavland, M.; Mahadevaiah, S.; Meaney, P.A.; Maltese, M.R.; Berg, R.A.; Nadkarni, V.M. Analysis of transthoracic impedance during real cardiac arrest defibrillation attempts in older children and adolescents: Are stacked-shocks appropriate? Resuscitation 2010, 81, 1540–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadek, M.M.; Chaugai, V.; Cleland, M.J.; Zakutney, T.J.; Birnie, D.H.; Ramirez, F.D. Association between transthoracic impedance and electrical cardioversion success with biphasic defibrillators: An analysis of 1055 shocks for atrial fibrillation and flutter. Clin. Cardiol. 2018, 41, 666–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, F.D.; Sadek, M.M.; Boileau, I.; Cleland, M.; Nery, P.B.; Nair, G.M.; Redpath, C.J.; Green, M.S.; Davis, D.R.; Charron, K.; et al. Evaluation of a novel cardioversion intervention for atrial fibrillation: The Ottawa AF cardioversion protocol. Europace 2019, 21, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Rodríguez, E.; Pérez-Sandoval, H.A.; Rangel-Rojo, F.J. Orthogonal electrical cardioversion in atrial fibrillation refractory to biphasic shocks: A case series. Eur. Heart J.-Case Rep. 2020, 4, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Anantharaman, V.; Wan, P.W.; Tay, S.Y.; Manning, P.G.; Lim, S.H.; Chua, S.J.T.; Mohan, T.; Rabind, A.C.; Vidya, S.; Hao, Y. Role of peak current in conversion of patients with ventricular fibrillation. Singap. Med. J. 2017, 58, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Exclusion Criteria | Inclusion Criteria | |
---|---|---|
Reported Outcomes | No mention of TTI | Human and animal TTI measurements and analysis of factors influencing TTI |
Exposure of Interest | TTI without connection to defibrillation | Defibrillation and cardioversion |
Implanted device-based methods | Electrode and paddle TTI measurements | |
Relationship between tidal volume and TTI amplitude | ||
Transthoracic impedance cardiography | ||
Setting | Impedance tracking in real time | Outpatient and inpatient hospital reports |
Date | Papers published before 1970 | Papers published 1970–2021 |
Language | Non-English | English |
Additional criteria for meta-analysis of human TTI measurements | Animal measurements | Human TTI measurements only |
Crucial data missing (mean, highest and lowest) | Documentation of at least mean, highest or lowest TTI | |
Case studies | Minimum of 5 subjects |
Statistical Calculation | TTI in Ω | |||
---|---|---|---|---|
Minimum | Mean | Maximum | SD | |
Mean TTI | 41.0 | 77.8 | 127.8 | 16.4 |
Maximum TTI | 74.0 | 162.0 | 212.0 | 36.0 |
Minimum TTI | 12.0 | 36.0 | 84.0 | 3.0 |
sample size (n) | 32 | 118 | 32 | 100 |
Literature | AA/AL Placement | AP Placement | TTI in AA Position Mean(± SD) in Ω | Mean TTI in AP Position Mean (± SD) in Ω | n for AA | n for AP |
---|---|---|---|---|---|---|
[44] | AA1 | AP | 31 | 39 | ||
[45] | AA1 | AP | 23 | 57 | ||
[42] | AA1 | AP1 | 20 | 20 | ||
[46] | AA3 | AP5 | 17 | 17 | ||
[47] | AA | AP | 45 | 45 | ||
[21] | AA1 | AP4 | 150 | 157 | ||
[48] | AL | AP2 | 86 | 86 | ||
[30] | AA1 | AP6 | 21 | 21 | ||
[30] | AA1 | AP6 | 21 | 21 | ||
[36] | AL | AP | 11 | 11 |
TTI | Age ≤ 42 | Age > 42 |
---|---|---|
BSA < 1.8 | ||
BSA > 1.8 |
Electrode Position | Gel Application Technique | Male Mean TTI ± SD () | Female Mean TTI ± SD () |
---|---|---|---|
Apex-to-anterior | Paddles only | ||
Parasternal-to-anterior | Paddles only | ||
Parasternal-to-anterior | Smeared | ||
Apex-to-anterior | Smeared |
Factors | Section | Influence | Change of TTI | Conclusion |
---|---|---|---|---|
Waveforms | Section 3.4.1 | low | no change | The biphasic waveform was found to be less sensitive to changes in TTI. The reduction in TTI for the biphasic waveform compared to the monophasic waveform was minimal. |
Serial shocks | Section 3.4.2 | low | ↓ with shocks | Not all studies are congruent. More studies reported decrease rather than stable TTI. All recorded decreases were small and SD usually high. |
Coupling device | Section 3.4.3 | high | ↓ for good coupling | Correct coupling (with gels/pastes and mechanical coupling of electrodes) at the electrode/tissue layer is a crucial factor for the TTI. |
Electrode size | Section 3.4.4 | high | ↓ with electrode size | All studies are congruent. Of particular significance in pediatric defibrillation with very small electrodes. |
Electrode pressure | Section 3.4.5 | high | ↓ with pressure | All studies are congruent. For adult defibrillation with paddles, 8 kgf is recommended. |
Electrode position | Section 3.4.6 | medium | ↓ in AP | Overall, the TTI was lower in the AP position than in the AA and AL electrode positions (marginal in some studies). The TTI did not differ in the subgroups of the different AA positions nor in the AP positions. A higher TTI was found for the transverse position compared to the longitudinal position. |
Age | Section 3.4.7 | medium | ↑ with age | Most of the differences are between adults and children, mainly because of body measurements that change with age. Only one study found TTI generally higher with age. |
Gender | Section 3.4.8 | low | ↕ | The results are inconsistent and no trends given. Characteristic differences between sexes can be considered: Breast hair should be removed to allow adequate coupling, on breast positioning of electrodes increases TTI, pregnancy does not affect TTI. |
Body dimensions | Section 3.4.9 | medium | ↑ with body dimensions | Different indicators were used in the different studies: weight, chest size, BSA and BMI, making comparison difficult. A small, if any, increase in TTI with increasing body dimensions is indicated. Severely overweight should be considered. |
Respiration and lung volume | Section 3.4.10 | low | ↑ with lung volume | Full lung volume may result in a slight increase in TTI. Measurements can be taken at end-expiratory time points to fully compensate for the of respiration. |
Hemoglobin saturation | Section 3.4.11 | low | ↑ with Hb O2 saturation | Three studies are congruent: Higher Hb O2 saturation has a slightly increasing effect on TTI. Only of clinical interest in combination with pathological symptoms leading to very atypical Hb O2 saturation values. |
Pathologies | Section 3.4.12 | low | ↕ | Mainly minor changes of TTI with pathological symptoms were observed. Severe changes were only documented after sternotomy. In general, the more advanced the pathophysiological symptoms, the greater the change in TTI. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heyer, Y.; Baumgartner, D.; Baumgartner, C. A Systematic Review of the Transthoracic Impedance during Cardiac Defibrillation. Sensors 2022, 22, 2808. https://doi.org/10.3390/s22072808
Heyer Y, Baumgartner D, Baumgartner C. A Systematic Review of the Transthoracic Impedance during Cardiac Defibrillation. Sensors. 2022; 22(7):2808. https://doi.org/10.3390/s22072808
Chicago/Turabian StyleHeyer, Yasmine, Daniela Baumgartner, and Christian Baumgartner. 2022. "A Systematic Review of the Transthoracic Impedance during Cardiac Defibrillation" Sensors 22, no. 7: 2808. https://doi.org/10.3390/s22072808
APA StyleHeyer, Y., Baumgartner, D., & Baumgartner, C. (2022). A Systematic Review of the Transthoracic Impedance during Cardiac Defibrillation. Sensors, 22(7), 2808. https://doi.org/10.3390/s22072808