Applications of Laser-Induced Fluorescence in Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measuring Apparatus
3. Results
3.1. Spectral Characteristics of Fluorophores
3.2. Application of LIF in Dental Diagnostics
3.3. Clinical LIF Applications Using Endogenous Fluorophores
3.4. Measurements of Photosensitizers in the PDD/PDT Method
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Andersson-Engels, S.; Johansson, S.J.; Svanberg, K.; Svanberg, S. Fluorescence imaging and point measurements of tissue: Applications to the demarcation of malignant tumors and atherosclerotic lesion from normal tissue. Photochem. Photobiol. 1991, 53, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, A.; Glassman, S.; Yang, Y.; Tang, G.C.; Budansky, Y.; Celmer, E.; Savage, H.E.; Schantz, S.P.; Alfano, R.R. Optical biopsy fibre-based fluorescence spectroscopy instrumentation. Proc. SPIE 1996, 2679, 118–123. [Google Scholar]
- De Jong, E.D.J.; Sundström, F.; Westerling, H.; Tranaeus, S.; Ten Bosch, J.J.; Angmar-Månsson, B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res. 1995, 29, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Bjelkhagen, H.; Sundström, F.; Angmar-Mansson, B.; Ryden, H. Early detection of enamel caries by the luminescence excited by visible laser light. Swed. Dent. J. 1982, 6, 1–7. [Google Scholar] [PubMed]
- Shakibaie, F.; George, R.; Walsh, L.J. Applications of Laser induced Fluorescence in Dentistry. Int. J. Dent. Clin. 2011, 3, 38–44. [Google Scholar]
- El-Sharkawy, Y.H.; Elbasuney, S. Tunable laser-induced fluorescence with signal correlation algorithm for dental caries detection with controlled ablation. Opt. Laser Technol. 2020, 129, 106299. [Google Scholar] [CrossRef]
- Goloshchapov, D.L.; Kashkarov, V.M.; Ippolitov, Y.A. Early screening of dentin caries using the methods of Micro-Raman and laser-induced fluorescence spectroscopy. Results Phys. 2018, 10, 346–347. [Google Scholar] [CrossRef]
- El-Sharkawy, Y.H.; Elbasuney, S. Design and implementation of novel hyperspectral imaging for dental carious early detection using laser induced fluorescence. Photodiagnosis Photodyn. Ther. 2018, 24, 166–178. [Google Scholar] [CrossRef]
- Ko, C.C.; Yi, D.H.; Lee, D.J.; Kwon, J.; Garcia-Godoy, F.; Kwon, Y.H. Diagnosis and staging of caries using spectral factors derived from the blue laser-induced autofluorescence spectrum. J. Dent. 2017, 67, 77–83. [Google Scholar] [CrossRef]
- Jeng, M.J.; Sharma, M.; Chao, T.Y.; Li, Y.C.; Huang, S.F.; Chang, L.B.; Chow, L. Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis. PLoS ONE 2020, 15, e0228132. [Google Scholar] [CrossRef]
- Lalla, Y.; Phil, M.; Matias, M.A.; Farah, C.S. Assessment of oral mucosal lesions with autofluorescence imaging and reflectance spectroscopy. J. Am. Dent. Assoc. 2016, 147, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kader, M.H. Photodynamic Therapy. From Theory to Application; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Morton, C.A.; Szeimies, R.M.; Basset-Seguin, N.; Calzavara-Pinton, P.; Gilaberte, Y.; Hædersdal, M.; Hofbauer, G.F.L.; Hunger, R.E.; Karrer, S.; Piaserico, S.; et al. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 1: Treatment delivery and established indications-Actinic keratoses, Bowen’s disease and basal cell carcinomas. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2225–2238. [Google Scholar] [CrossRef]
- Morton, C.A.; Braathen, L.R. Daylight photodynamic therapy for actinic keratoses. Am. J. Clin. Dermatol. 2018, 19, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-J.; Huang, T.-W.; Cheng, N.-L.; Hsieh, Y.-F.; Tsai, M.-H.; Chiou, J.-C. Portable LED-ind uced autofluorescence spectroscopy for oral cancer diagnosis. J. Biomed. Opt. 2017, 22, 045007. [Google Scholar] [CrossRef]
- Francisco, A.L.; Correr, W.R.; Pinto, C.A.; Gonçalves Filho, J.; Chulam, T.C.; Kurachi, C.; Kowalski, L.P. Analysis of surgical margins in oral cancer using in situ fluorescence spectroscopy. Oral Oncol. 2014, 50, 593–599. [Google Scholar] [CrossRef]
- Balasubramaniam, A.M.; Sriraman, R.; Sindhuja, P.; Mohideen, K.; Haris, K.T.M. Autofluorescence based diagnostic techniques for oral cancer. J. Pharm. Bioallied Sci. 2015, 7, 374–377. [Google Scholar] [CrossRef]
- Huang, T.T.; Huang, J.S.; Wang, Y.Y.; Chen, K.C.; Wong, T.Y.; Chen, Y.C.; Wu, C.W.; Chan, L.P.; Lin, Y.C.; Kao, Y.H.; et al. Novel quantitative analysis of autofluorescence images for oral cancer screening. Oral Oncol. 2017, 68, 20–26. [Google Scholar] [CrossRef]
- Ghasemi, F.; Parvin, P.; Lotfi, M. Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissue based on the fluorescence properties of formaldehyde. Laser Phys. Lett. 2019, 16, 035601. [Google Scholar] [CrossRef]
- Andreeva, V.; Aksamentova, E.; Muhachev, A.; Solovey, A.; Litvinov, I.; Gusarov, A.; Shevtsova, N.N.; Kushkin, D.; Litvinova, K. Preoperative AI-Driven Fluorescence Diagnosis of Non-Melanoma Skin Cancer. Diagnostics 2022, 12, 72. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; De Almeida, D.R.Q.; Terra, L.F.; Baptista, M.S.; Labrio, L. Photodynamic therapy in cancer treatment—An update review. J. Cancer Metastasis Treat. 2019, 5, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Loschenov, V.B.; Konov, V.I.; Prokhorov, A.M. Photodynamic Therapy and Fluorescence Diagnostics. Laser Phys. 2000, 10, 1188–1207. [Google Scholar]
- Bombalska, A.; Mularczyk-Oliwa, M.; Kwaśny, M.; Włodarski, M.; Kaliszewski, M.; Kopczyński, K.; Szpakowska, M.; Trafny, E.A. Classification of the biological material with use of FT-IR spectroscopy and statistical analysis. Spectrochim. Acta A 2011, 78, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J. Principles of Fluorescent Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Konig, K.; Teschke, M.; Eick, S.; Pfister, W.; Meyer, H.; Halbhuber, K. Photodynamically inactivation of Propionibacterium acnes. Proc. SPIE 1994, 3274, 106–110. [Google Scholar]
- Kwon, O.S.; Blazques, M.; Churchich, J.E. Luminescencje spectroscopy of pyridoxic acid and pyridoxic amid bund to protein. Eur. J. Biochem. 1994, 219, 807–812. [Google Scholar] [CrossRef]
- Blakely, R.L. The Chemistry of Folic Acid and Related Pteridines; Wiley Intersciencies: New York, NY, USA, 1969. [Google Scholar]
- Yao, Y.; Shi, L.; Zhang, Z.; Sun, H.; Wu, L. Application of fungal fluorescent staining oral candidiasis: Diagnostic analysis of 228 specimens. BMC Microbiol. 2019, 19, 96. [Google Scholar] [CrossRef]
- Bartosińska, J.; Szczepanik-Kułak, P.; Raczkiewicz, D.; Niwiedzioł, M.; Gerkowicz, A.; Kowalczuk, D.; Kwaśny, M.; Krasowska, D. Topical photodynamic therapy with different forms of 5-aminolevulinic acid in the treatment of actinic keratosis. Pharmaceutics 2022, 14, 346. [Google Scholar] [CrossRef]
- Kwaśny, M.; Mierczyk, Z.; Fiedor, P.; Rowiński, W.; Socha, K.; Graczyk, A.; Domaniecki, J.; Mazurek, A.P. Protoporphyrin Derivatives—The Use in Localization of Neoplasmas by Titanium Laser-induced Fluorescence Technique. Acta Pol. Pharm. 1997, 54, 123–128. [Google Scholar]
- Walsh, L.J. Caries Diagnosis Aided by Fluorescence. In Dental Caries-Diagnosis, Prevention and Management; Arkanslan, Z., Ed.; IntechOpen: Rijeka, Croatia, 2018; pp. 97–115. [Google Scholar]
- Hayata, Y.; Kato, H.; Konaka, C.; Okunaka, T. Photodynamic therapy in early stage cancer. Lung Cancer 1993, 9, 287–294. [Google Scholar] [CrossRef]
- Lam, S.; McAulay, C.; Hung, J.; LeRiche, J.; Profio, A.E.; Palcic, B. Detection of dysplasja and carcinoma in situ by a lung imaging fluorescence endoscope (LIFE) device. Laser Surg. Med. 1992, 4, 40. [Google Scholar]
- Hanken, H.; Kraatz, J.; Smeets, R.; Heiland, M.; Blessmann, M.; Eichhorn, W.; Clauditz, T.S.; Gröbe, A.; Kolk, A.; Rana, M. The detection of oral pre malignant lesions with an autofluorescence based imaging system (VELscope TM)—A single blinded clinical evaluation. Head Face Med. 2013, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśny, M.; Bombalska, A. Applications of Laser-Induced Fluorescence in Medicine. Sensors 2022, 22, 2956. https://doi.org/10.3390/s22082956
Kwaśny M, Bombalska A. Applications of Laser-Induced Fluorescence in Medicine. Sensors. 2022; 22(8):2956. https://doi.org/10.3390/s22082956
Chicago/Turabian StyleKwaśny, Mirosław, and Aneta Bombalska. 2022. "Applications of Laser-Induced Fluorescence in Medicine" Sensors 22, no. 8: 2956. https://doi.org/10.3390/s22082956
APA StyleKwaśny, M., & Bombalska, A. (2022). Applications of Laser-Induced Fluorescence in Medicine. Sensors, 22(8), 2956. https://doi.org/10.3390/s22082956