Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Functional Tasks
2.3. Motion Analysis Systems
2.3.1. Optical Marker-Based System
2.3.2. IMU System
2.3.3. Markerless System
2.4. Data Analysis
2.4.1. Optical Marker-Based System
2.4.2. IMU System
2.4.3. Markerless System
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Joint | Parent | Child |
---|---|---|
Elbow | Upper Arm | Forearm |
Shoulder | Torso | Upper Arm |
Neck | Torso | Head |
Torso | Torso | Pelvis |
Appendix B
References
- Ehara, Y.; Fujimoto, H.; Miyazaki, S.; Tanaka, S.; Yamamoto, S. Comparison of the performance of 3D camera systems. Gait Posture 1995, 3, 166–169. [Google Scholar] [CrossRef]
- Guerra-Filho, G.B. Optical Motion Capture: Theory and Implementation. J. Theor. Appl. Inform. 1995, 12, 61–90. [Google Scholar]
- Cappozzo, A.; Catani, F.; Leardini, A.; Benedetti, M.G.; Della Croce, U. Position and orientation in space of bones during movement: Experimental artefacts. Clin. Biomech. 1996, 11, 90–100. [Google Scholar] [CrossRef]
- Ramos, E.; Latash, M.P.; Hurvitz, E.A.; Brown, S.H. Quantification of upper extremity function using kinematic analysis. Arch. Phys. Med. Rehabil. 1997, 78, 491–496. [Google Scholar] [CrossRef]
- Lucchetti, L.; Cappozzo, A.; Cappello, A.; Croce, U.D. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J. Biomech. 1998, 31, 977–984. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Cai, Q. Human Motion Analysis: A Review. Comput. Vis. Image Underst. 1999, 73, 428–440. [Google Scholar] [CrossRef]
- Richards, J.G. The measurement of human motion: A comparison of commercially available systems. Hum. Mov. Sci. 1999, 18, 589–602. [Google Scholar] [CrossRef]
- Maletsky, L.P.; Sun, J.; Morton, N.A. Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J Biomech. 2007, 40, 682–685. [Google Scholar] [CrossRef]
- Moeslund, T.B.; Hilton, A.; Krüger, V. A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 2006, 104, 90–126. [Google Scholar] [CrossRef]
- Mundermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-Y.; Lange, B.; Zhang, M.; Koenig, S.; Requejo, P.; Somboon, N.; Sawchuk, A.; Rizzo, A. Towards Pervasive Physical Rehabilitation Using Microsoft Kinect. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012. [Google Scholar] [CrossRef] [Green Version]
- Duc, C.; Salvia, P.; Lubansu, A.; Feipel, V.; Aminian, K. A wearable inertial system to assess the cervical spine mobility: Comparison with an optoelectronic-based motion capture evaluation. Med. Eng. Phys. 2014, 36, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Hondori, H.; Khademi, M. A Review on Technical and Clinical Impact of Microsoft Kinect on Physical Therapy and Rehabilitation. J. Med. Eng. 2014, 2014, 846514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvier, B.; Duprey, S.; Claudon, L.; Dumas, R.; Savescu, A. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations. Sensors 2015, 15, 18813–18833. [Google Scholar] [CrossRef] [PubMed]
- Resnik, L.; Klinger, S.L.; Etter, K. The DEKA Arm: Its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm. Prosthet. Orthot. Int. 2014, 38, 492–504. [Google Scholar] [CrossRef] [Green Version]
- Bloomer, C.; Kontson, K.L. Comparison of DEKA Arm and body-powered upper limb prosthesis joint kinematics. Arch. Rehabil. Res. Clin. Transl. 2020, 2, 100057. [Google Scholar] [CrossRef]
- Abd Razak, N.A.; Abu Osman, N.A.; Wan Abas, W.A. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: A preliminary study. Disabil. Rehabil. Assist. Technol. 2013, 8, 255–260. [Google Scholar] [CrossRef]
- Semasinghe, C.L.; Madusanka, D.G.K.; Ranaweera, R.; Gopura, R. Transradial prostheses: Trends in development of hardware and control systems. Int. J. Med. Robot. 2019, 15, e1960. [Google Scholar] [CrossRef] [Green Version]
- Resnik, L.; Klinger, S.L.; Etter, K.; Fantini, C. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: User experience. Disabil. Rehabil. Assist. Technol. 2014, 9, 318–329. [Google Scholar] [CrossRef]
- Bloomer, C.; Wang, S.; Kontson, K. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training. PLoS ONE 2020, 15, e0226563. [Google Scholar] [CrossRef]
- Metzger, A.J.; Dromerick, A.W.; Holley, R.J.; Lum, P.S. Characterization of compensatory trunk movements during prosthetic upper limb reaching tasks. Arch. Phys. Med. Rehabil. 2012, 93, 2029–2034. [Google Scholar] [CrossRef]
- Metcalf, C.D.; Robinson, R.; Malpass, A.J.; Bogle, T.P.; Dell, T.A.; Harris, C.; Demain, S.H. Markerless motion capture and measurement of hand kinematics: Validation and application to home-based upper limb rehabilitation. IEEE Trans. Biomed. Eng. 2013, 60, 2184–2192. [Google Scholar] [CrossRef]
- Patrizi, A.; Pennestri, E.; Valentini, P.P. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics. Ergonomics 2016, 59, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Matsen, F.A., 3rd; Lauder, A.; Rector, K.; Keeling, P.; Cherones, A.L. Measurement of active shoulder motion using the Kinect, a commercially available infrared position detection system. J. Shoulder. Elbow. Surg. 2016, 25, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Pua, Y.H.; Fortin, K.; Ritchie, C.; Webster, K.E.; Denehy, L.; Bryant, A.L. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture 2012, 36, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Fern’ndez-Baena, A.; Susin, A.; Lligadas, X. Biomechanical Validation of Upper-Body and Lower-Body Joint Movements of Kinect Motion Capture Data for Rehabilitation Treatments. In Proceedings of the 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Bucharest, Romania, 19–21 September 2012; pp. 656–661. [Google Scholar] [CrossRef] [Green Version]
- Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Brodie, M.A.; Walmsley, A.; Page, W. The static accuracy and calibration of inertial measurement units for 3D orientation. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Saber-Sheikh, K.; Bryant, E.C.; Glazzard, C.; Hamel, A.; Lee, R.Y. Feasibility of using inertial sensors to assess human movement. Man. Ther. 2010, 15, 122–125. [Google Scholar] [CrossRef]
- Zhang, J.T.; Novak, A.C.; Brouwer, B.; Li, Q. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiol. Meas. 2013, 34, N63–N69. [Google Scholar] [CrossRef]
- Pfau, T.; Weller, R. Comparison of a standalone consumer grade smartphone with a specialist inertial measurement unit for quantification of movement symmetry in the trotting horse. Equine Vet. J. 2017, 49, 124–129. [Google Scholar] [CrossRef]
- Poitras, I.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.S. Validity of Wearable Sensors at the Shoulder Joint: Combining Wireless Electromyography Sensors and Inertial Measurement Units to Perform Physical Workplace Assessments. Sensors 2019, 19, 1885. [Google Scholar] [CrossRef] [Green Version]
- Cuesta-Vargas, A.I.; Roldan-Jimenez, C. Validity and reliability of arm abduction angle measured on smartphone: A cross-sectional study. BMC Musculoskelet. Disord. 2016, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Mourcou, Q.; Fleury, A.; Franco, C.; Klopcic, F.; Vuillerme, N. Performance Evaluation of Smartphone Inertial Sensors Measurement for Range of Motion. Sensors 2015, 15, 23168–23187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlagenhauf, F.; Sahoo, P.P.; Singhose, W. A Comparison of Dual-Kinect and Vicon Tracking of Human Motion for Use in Robotic Motion Programming. Robot. Autom. Eng. J. 2017, 1, 555558. [Google Scholar]
- Windolf, M.; Gotzen, N.; Morlock, M. Systematic accuracy and precision analysis of video motion capturing systems—Exemplified on the Vicon-460 system. J. Biomech. 2008, 41, 2776–2780. [Google Scholar] [CrossRef]
- Mjosund, H.L.; Boyle, E.; Kjaer, P.; Mieritz, R.M.; Skallgard, T.; Kent, P. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes. BMC Musculoskelet. Disord. 2017, 18, 124. [Google Scholar] [CrossRef] [Green Version]
- Yeung, L.F.; Cheng, K.C.; Fong, C.H.; Lee, W.C.; Tong, K.Y. Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway. Gait Posture 2014, 40, 532–538. [Google Scholar] [CrossRef]
- Richter, C.; Daniels, K.A.J.; King, E.; Franklyn-Miller, A. Agreement between An Inertia and Optical Based Motion Capture during the VU-Return-to-Play- Field-Test. Sensors 2020, 20, 831. [Google Scholar] [CrossRef] [Green Version]
- Van der Straaten, R.; Bruijnes, A.; Vanwanseele, B.; Jonkers, I.; De Baets, L.; Timmermans, A. Reliability and Agreement of 3D Trunk and Lower Extremity Movement Analysis by Means of Inertial Sensor Technology for Unipodal and Bipodal Tasks. Sensors 2019, 19, 141. [Google Scholar] [CrossRef] [Green Version]
- Dogan, M.; Kocak, M.; Onursal Kilinc, O.; Ayvat, F.; Sutcu, G.; Ayvat, E.; Kilinc, M.; Unver, O.; Aksu Yildirim, S. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors. Gait Posture 2019, 70, 141–147. [Google Scholar] [CrossRef]
- Moon, Y.; McGinnis, R.S.; Seagers, K.; Motl, R.W.; Sheth, N.; Wright, J.A., Jr.; Ghaffari, R.; Sosnoff, J.J. Monitoring gait in multiple sclerosis with novel wearable motion sensors. PLoS ONE 2017, 12, e0171346. [Google Scholar] [CrossRef]
- Weenk, D.; van Beijnum, B.J.; Baten, C.T.; Hermens, H.J.; Veltink, P.H. Automatic identification of inertial sensor placement on human body segments during walking. J. Neuroeng. Rehabil. 2013, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, B.; Ilg, W.; Giese, M.A.; Ludolph, N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PLoS ONE 2017, 12, e0175813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Pagliari, D.; Pinto, L. Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors. Sensors 2015, 15, 27569–27589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, A.; Ye, M.; Shapiro, R.; Yang, R.; Noehren, B. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. J. Biomech. 2014, 47, 587–591. [Google Scholar] [CrossRef]
- Elliott, B.C.; Alderson, J.A.; Denver, E.R. System and modelling errors in motion analysis: Implications for the measurement of the elbow angle in cricket bowling. J. Biomech. 2007, 40, 2679–2685. [Google Scholar] [CrossRef]
- Wang, S.; Hsu, C.J.; Trent, L.; Ryan, T.; Kearns, N.T.; Civillico, E.F.; Kontson, K.L. Evaluation of Performance-Based Outcome Measures for the Upper Limb: A Comprehensive Narrative Review. PM R J. Inj. Funct. Rehabil. 2018, 10, 951–962.e3. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Weeks, D.L.; Wallace, S.A.; Anderson, D.I. Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs. Arch. Phys. Med. Rehabil. 2003, 84, 437–443. [Google Scholar] [CrossRef]
- Berning, K.; Cohick, S.; Johnson, R.; Miller, L.A.; Sensinger, J.W. Comparison of body-powered voluntary opening and voluntary closing prehensor for activities of daily life. J. Rehabil. Res. Dev. 2014, 51, 253–261. [Google Scholar] [CrossRef]
- Bouwsema, H.; van der Sluis, C.K.; Bongers, R.M. Changes in performance over time while learning to use a myoelectric prosthesis. J. Neuroeng. Rehabil. 2014, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haverkate, L.; Smit, G.; Plettenburg, D.H. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test. Prosthet. Orthot. Int. 2016, 40, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Huinink, L.H.; Bouwsema, H.; Plettenburg, D.H.; van der Sluis, C.K.; Bongers, R.M. Learning to use a body-powered prosthesis: Changes in functionality and kinematics. J. Neuroeng. Rehabil. 2016, 13, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomer, C.; Wang, S.; Kontson, K. Creating a standardized, quantitative training protocol for upper limb bypass prostheses. Phys. Med. Rehabil. Res. 2018, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kontson, K.; Marcus, I.; Myklebust, B.; Civillico, E. Targeted box and blocks test: Normative data and comparison to standard tests. PLoS ONE 2017, 12, e0177965. [Google Scholar] [CrossRef]
- Kontson, K.L.; Wang, S.; Barovsky, S.; Bloomer, C.; Wozniczka, L.; Civillico, E.F. Assessing kinematic variability during performance of Jebsen-Taylor Hand Function Test. J. Hand. Ther. 2019, 33, 34–44. [Google Scholar] [CrossRef]
- Jebsen, R.H.; Taylor, N.; Trieschmann, R.B.; Trotter, M.J.; Howard, L.A. An objective and standardized test of hand function. Arch. Phys. Med. Rehabil. 1969, 50, 311–319. [Google Scholar]
- Resnik, L.; Borgia, M.; Latlief, G.; Sasson, N.; Smurr-Walters, L. Self-reported and performance-based outcomes using DEKA Arm. J. Rehabil. Res. Dev. 2014, 51, 351–362. [Google Scholar] [CrossRef]
- Lindner, H.Y.; Langius-Eklof, A.; Hermansson, L.M. Test-retest reliability and rater agreements of assessment of capacity for myoelectric control version 2.0. J. Rehabil. Res. Dev. 2014, 51, 635–644. [Google Scholar] [CrossRef]
- Kearns, N.T.; Peterson, J.K.; Smurr Walters, L.; Jackson, W.T.; Miguelez, J.M.; Ryan, T. Development and Psychometric Validation of Capacity Assessment of Prosthetic Performance for the Upper Limb (CAPPFUL). Arch. Phys. Med. Rehabil. 2018, 99, 1789–1797. [Google Scholar] [CrossRef]
- Boyle, A.; Prejean, B.; Ruhde, L.; Pool, K.; Bollinger, C.; Miguelez, J.; Conyers, D.; Ryan, T.; Kontson, K.L. Capacity Assessment of Prosthetic Performance for the Upper Limb (CAPPFUL): Characterization of Normative Kinematics and Performance. PMR 2019, 12, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Resnik, L.; Adams, L.; Borgia, M.; Delikat, J.; Disla, R.; Ebner, C.; Walters, L.S. Development and evaluation of the activities measure for upper limb amputees. Arch. Phys. Med. Rehabil. 2013, 94, 488–494.e4. [Google Scholar] [CrossRef] [PubMed]
- Gastaldi, L.; Lisco, G.; Pastorelli, S. Evaluation of functional methods for human movement modelling. Acta. Bioeng. Biomech. 2015, 17, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Fitoussi, F.; Maurel, N.; Diop, A.; Laassel, E.M.; Ilharreborde, B.; Presedo, A.; Mazda, K.; Pennecot, G.F. Upper extremity kinematics analysis in obstetrical brachial plexus palsy. Orthop. Traumatol. Surg. Res. 2009, 95, 336–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd Razak, N.A.; Abu Osman, N.A.; Gholizadeh, H.; Ali, S. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: A preliminary study. Biomed. Eng. Online 2014, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Hingtgen, B.; McGuire, J.R.; Wang, M.; Harris, G.F. An upper extremity kinematic model for evaluation of hemiparetic stroke. J. Biomech. 2006, 39, 681–688. [Google Scholar] [CrossRef]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Veltink, P.H. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach? Sensors 2016, 16, 2138. [Google Scholar] [CrossRef]
- Luinge, H.J.; Veltink, P.H.; Baten, C.T. Ambulatory measurement of arm orientation. J. Biomech. 2007, 40, 78–85. [Google Scholar] [CrossRef]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Yu, Y.; Zhou, Y.; Du, S. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture. Sensors 2015, 15, 24297–24317. [Google Scholar] [CrossRef] [Green Version]
- Pohlmann, S.T.; Harkness, E.F.; Taylor, C.J.; Astley, S.M. Evaluation of Kinect 3D Sensor for Healthcare Imaging. J. Med. Biol. Eng. 2016, 36, 857–870. [Google Scholar] [CrossRef] [PubMed]
- iPiSoft. User Guide for Multiple Depth Sensors Configuration. Available online: http://docs.ipisoft.com/index.php?title=User_Guide_for_Multiple_Depth_Sensors_Configuration&oldid=2024 (accessed on 1 February 2019).
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef] [PubMed]
OM—Task Name | Description |
---|---|
JHFT—Page Turn | Flip over five 3 × 5-inch notecards arranged in a row with any technique, starting with the leftmost card and moving across. |
JHFT—Small Objects | Pick up six small objects (2 paperclips, 2 bottle caps, and 2 pennies) arranged two inches apart on the dominant side of the subject, and place in an empty can individually, starting with the right most object. |
JHFT—Heavy Objects | Lift 5 filled cans individually about 1 inch onto a board, starting with the rightmost can. |
AMULA—Fork | Grasp fork and bring to mouth, move fork back to table and release fork. |
AMULA—Doorknob | Reach, grasp, and turn doorknob. Release doorknob. |
AMULA—Reach | Lift arm overhead to grasp empty cup on shelf and bring down arm with cup in hand. |
CAPPFUL—Dice | Pick up three dice from a plate, touch to chin, and return to plate. |
CAPPFUL—Bottle | Empty a squeeze bottle of water into a cup. |
CAPPFUL—Picture | Modified task—Reach overhead to grasp two rings suspended in the air on a pulley system, bring rings down to waist, then control the placement of rings back in their suspended position. |
tBBT | Transport 16 blocks, one at a time, over a partition using only the dominant hand, starting with the innermost left block and moving across each row placing the block in its mirrored position. |
Joint/DoF | Tasks | ICC (Kinect) | 95% CI | ICC (Vicon) | 95% CI | ICC (Xsens) | 95% CI |
---|---|---|---|---|---|---|---|
Right Elbow F/E | CAPPFUL4 | 0.73 | [0.42, 0.92] | 0.88 | [0.6, 0.98] | 0.88 | [0.59, 0.98] |
tBBT | 0.21 | [−0.15, 0.66] | 0.76 | [0.32, 0.96] | 0.66 | [0.17, 0.94] | |
AMULA10 | 0.31 | [−0.071, 0.72] | 0.72 | [0.34, 0.93] | 0.91 | [0.75, 0.98] | |
AMULA16 | 0.19 | [−0.18, 0.66] | 0.47 | [0.025, 0.84] | 0.85 | [0.59, 0.96] | |
AMULA24 | 0.86 | [0.64, 0.96] | 0.68 | [0.2, 0.94] | 0.80 | [0.42, 0.97] | |
CAPPFUL11 | 0.69 | [0.35, 0.9] | 0.36 | [−0.073, 0.79] | 0.79 | [0.46, 0.95] | |
CAPPFUL8 | 0.47 | [0.077, 0.81] | 0.95 | [0.85, 0.99] | 0.82 | [0.53, 0.96] | |
JHFT2 | 0.33 | [−0.05, 0.73] | −0.16 | [−0.38, 0.36] | 0.18 | [−0.21, 0.69] | |
JHFT3 | 0.19 | [−0.16, 0.64] | 0.54 | [0.096, 0.87] | 0.41 | [−0.029, 0.81] | |
JHFT7 | 0.40 | [−0.014, 0.79] | 0.63 | [0.21, 0.9] | 0.69 | [0.3, 0.92] | |
Right Shoulder F/E | CAPPFUL4 | 0.66 | [0.31, 0.89] | 0.92 | [0.75, 0.98] | 0.91 | [0.73, 0.98] |
tBBT | 0.22 | [−0.14, 0.66] | 0.56 | [0.12, 0.87] | 0.57 | [0.14, 0.88] | |
AMULA10 | 0.50 | [0.1, 0.82] | 0.65 | [0.24, 0.91] | 0.69 | [0.3, 0.92] | |
AMULA16 | 0.33 | [−0.077, 0.75] | 0.73 | [0.4, 0.92] | 0.58 | [0.18, 0.87] | |
AMULA24 | 0.73 | [0.4, 0.92] | 0.88 | [0.7, 0.97] | 0.92 | [0.79, 0.98] | |
CAPPFUL11 | 0.42 | [0.024, 0.78] | 0.87 | [0.68, 0.96] | 0.80 | [0.54, 0.94] | |
CAPPFUL8 | 0.16 | [−0.19, 0.61] | 0.98 | [0.93, 0.99] | 0.78 | [0.49, 0.93] | |
JHFT2 | −0.12 | [−0.34, 0.33] | 0.67 | [0.3, 0.9] | 0.66 | [0.29, 0.9] | |
JHFT3 | 0.66 | [0.31, 0.89] | 0.78 | [0.48, 0.94] | 0.75 | [0.43, 0.93] | |
JHFT7 | 0.23 | [−0.15, 0.69] | 0.80 | [0.5, 0.95] | 0.81 | [0.52, 0.96] | |
Right Shoulder Ab/Ad | CAPPFUL4 | 0.47 | [0.072, 0.8] | 0.66 | [0.25, 0.91] | 0.63 | [0.21, 0.9] |
tBBT | 0.10 | [−0.22, 0.57] | 0.42 | [−0.02, 0.82] | 0.64 | [0.22, 0.9] | |
AMULA10 | 0.38 | [−0.014, 0.76] | 0.71 | [0.33, 0.93] | 0.90 | [0.7, 0.98] | |
AMULA16 | 0.50 | [0.081, 0.83] | 0.76 | [0.44, 0.93] | 0.51 | [0.094, 0.84] | |
AMULA24 | 0.83 | [0.57, 0.95] | 0.90 | [0.74, 0.97] | 0.91 | [0.77, 0.97] | |
CAPPFUL11 | 0.46 | [0.065, 0.8] | 0.85 | [0.63, 0.96] | 0.89 | [0.72, 0.97] | |
CAPPFUL8 | 0.51 | [0.11, 0.82] | 0.91 | [0.76, 0.97] | 0.90 | [0.75, 0.97] | |
JHFT2 | 0.37 | [−0.021, 0.75] | 0.69 | [0.33, 0.91] | 0.79 | [0.49, 0.94] | |
JHFT3 | 0.39 | [0.0016, 0.77] | 0.79 | [0.49, 0.94] | 0.86 | [0.64, 0.96] | |
JHFT7 | −0.01 | [−0.3, 0.5] | 0.50 | [0.062, 0.85] | 0.42 | [−0.017, 0.82] | |
Right Shoulder Rot | CAPPFUL4 | 0.78 | [0.49, 0.93] | 0.92 | [0.75, 0.98] | 0.79 | [0.47, 0.95] |
tBBT | 0.11 | [−0.21, 0.58] | 0.61 | [0.18, 0.89] | 0.60 | [0.17, 0.89] | |
AMULA10 | 0.44 | [0.048, 0.79] | 0.84 | [0.56, 0.96] | 0.97 | [0.91, 0.99] | |
AMULA16 | 0.15 | [−0.2, 0.64] | 0.77 | [0.46, 0.94] | 0.51 | [0.099, 0.84] | |
AMULA24 | 0.44 | [0.022, 0.81] | 0.92 | [0.78, 0.98] | 0.89 | [0.71, 0.97] | |
CAPPFUL11 | 0.49 | [0.096, 0.82] | 0.73 | [0.42, 0.92] | 0.79 | [0.52, 0.94] | |
CAPPFUL8 | 0.84 | [0.61, 0.95] | 0.56 | [0.17, 0.85] | 0.70 | [0.36, 0.9] | |
JHFT2 | 0.78 | [0.49, 0.93] | 0.18 | [−0.19, 0.65] | 0.56 | [0.15, 0.86] | |
JHFT3 | 0.35 | [−0.033, 0.75] | 0.66 | [0.28, 0.9] | 0.78 | [0.48, 0.94] | |
JHFT7 | −0.11 | [−0.35, 0.38] | 0.53 | [0.089, 0.86] | 0.45 | [0.0077, 0.83] | |
Neck F/E | CAPPFUL4 | 0.54 | [0.15, 0.84] | 0.52 | [0.0014, 0.9] | −0.10 | [−0.38, 0.56] |
tBBT | −0.03 | [−0.3, 0.45] | 0.17 | [−0.26, 0.76] | 0.05 | [−0.32, 0.69] | |
AMULA10 | 0.30 | [−0.082, 0.71] | 0.60 | [0.14, 0.91] | 0.60 | [0.14, 0.91] | |
AMULA16 | 0.55 | [0.14, 0.86] | 0.28 | [−0.14, 0.75] | 0.42 | [−0.019, 0.82] | |
AMULA24 | 0.52 | [0.11, 0.84] | 0.96 | [0.9, 0.99] | 0.97 | [0.91, 0.99] | |
CAPPFUL11 | 0.31 | [−0.075, 0.72] | 0.54 | [0.13, 0.85] | 0.86 | [0.63, 0.96] | |
CAPPFUL8 | 0.72 | [0.4, 0.91] | 0.76 | [0.38, 0.95] | 0.58 | [0.11, 0.9] | |
JHFT2 | 0.31 | [−0.089, 0.74] | 0.69 | [0.31, 0.92] | 0.20 | [−0.19, 0.7] | |
JHFT3 | 0.29 | [−0.084, 0.71] | 0.68 | [0.19, 0.94] | 0.36 | [−0.14, 0.85] | |
JHFT7 | −0.02 | [−0.3, 0.49] | 0.76 | [0.41, 0.94] | 0.86 | [0.62, 0.97] | |
Neck LaF | CAPPFUL4 | −0.23 | [−0.39, 0.17] | 0.75 | [0.3, 0.96] | 0.86 | [0.54, 0.98] |
tBBT | 0.23 | [−0.13, 0.67] | 0.49 | [−0.029, 0.89] | 0.37 | [−0.13, 0.85] | |
AMULA10 | 0.59 | [0.22, 0.86] | 0.64 | [0.18, 0.92] | 0.79 | [0.43, 0.96] | |
AMULA16 | 0.26 | [−0.13, 0.71] | 0.23 | [−0.17, 0.72] | −0.12 | [−0.36, 0.41] | |
AMULA24 | 0.69 | [0.33, 0.91] | 0.93 | [0.81, 0.98] | 0.93 | [0.79, 0.98] | |
CAPPFUL11 | 0.44 | [0.048, 0.79] | 0.85 | [0.62, 0.96] | 0.90 | [0.74, 0.98] | |
CAPPFUL8 | 0.62 | [0.25, 0.87] | 0.74 | [0.34, 0.94] | 0.67 | [0.23, 0.92] | |
JHFT2 | 0.11 | [−0.23, 0.61] | 0.66 | [0.25, 0.91] | 0.63 | [0.21, 0.9] | |
JHFT3 | 0.48 | [0.087, 0.81] | 0.85 | [0.53, 0.98] | 0.92 | [0.71, 0.99] | |
JHFT7 | 0.09 | [−0.24, 0.58] | 0.39 | [−0.048, 0.81] | 0.48 | [0.034, 0.84] | |
Neck Rot | CAPPFUL4 | −0.05 | [−0.31, 0.42] | 0.91 | [0.69, 0.99] | 0.13 | [−0.28, 0.74] |
tBBT | 0.13 | [−0.2, 0.59] | 0.71 | [0.25, 0.95] | 0.47 | [−0.051, 0.88] | |
AMULA10 | 0.60 | [0.23, 0.87] | 0.89 | [0.66, 0.98] | 0.56 | [0.09, 0.89] | |
AMULA16 | 0.25 | [−0.13, 0.71] | 0.31 | [−0.12, 0.76] | 0.38 | [−0.057, 0.8] | |
AMULA24 | 0.59 | [0.19, 0.87] | 0.93 | [0.8, 0.98] | 0.99 | [0.98, 1] | |
CAPPFUL11 | 0.54 | [0.16, 0.84] | 0.89 | [0.7, 0.97] | 0.80 | [0.52, 0.95] | |
CAPPFUL8 | 0.51 | [0.12, 0.82] | 0.60 | [0.14, 0.9] | 0.71 | [0.29, 0.94] | |
JHFT2 | 0.27 | [−0.12, 0.71] | 0.60 | [0.18, 0.89] | 0.15 | [−0.22, 0.67] | |
JHFT3 | 0.36 | [−0.028, 0.75] | 0.91 | [0.68, 0.99] | 0.69 | [0.21, 0.94] | |
JHFT7 | 0.09 | [−0.24, 0.59] | 0.74 | [0.37, 0.93] | 0.68 | [0.28, 0.92] | |
Torso F/E | CAPPFUL4 | 0.82 | [0.58, 0.95] | 0.98 | [0.93, 1] | 0.90 | [0.65, 0.98] |
tBBT | −0.07 | [−0.32, 0.4] | 0.52 | [0.043, 0.88] | 0.58 | [0.12, 0.9] | |
AMULA10 | 0.50 | [0.11, 0.82] | 0.70 | [0.27, 0.93] | 0.69 | [0.26, 0.93] | |
AMULA16 | 0.06 | [−0.26, 0.56] | 0.59 | [0.22, 0.86] | 0.42 | [0.032, 0.78] | |
AMULA24 | 0.07 | [−0.25, 0.57] | 0.96 | [0.87, 0.99] | 0.93 | [0.79, 0.98] | |
CAPPFUL11 | 0.46 | [0.066, 0.8] | 0.90 | [0.74, 0.97] | 0.60 | [0.23, 0.87] | |
CAPPFUL8 | 0.62 | [0.25, 0.87] | 0.83 | [0.57, 0.95] | 0.68 | [0.31, 0.91] | |
JHFT2 | 0.40 | [0.0059, 0.77] | 0.48 | [0.083, 0.81] | 0.72 | [0.4, 0.91] | |
JHFT3 | 0.34 | [−0.044, 0.74] | 0.89 | [0.73, 0.97] | 0.90 | [0.73, 0.97] | |
JHFT7 | 0.70 | [0.35, 0.91] | 0.57 | [0.16, 0.86] | 0.39 | [−0.023, 0.78] | |
Torso LaF | CAPPFUL4 | 0.67 | [0.32, 0.89] | 0.66 | [0.17, 0.94] | 0.78 | [0.36, 0.96] |
tBBT | 0.27 | [−0.1, 0.7] | 0.71 | [0.29, 0.94] | 0.66 | [0.22, 0.92] | |
AMULA10 | 0.72 | [0.4, 0.91] | 0.82 | [0.49, 0.96] | 0.35 | [−0.11, 0.81] | |
AMULA16 | 0.19 | [−0.18, 0.67] | 0.90 | [0.74, 0.97] | 0.72 | [0.4, 0.91] | |
AMULA24 | 0.11 | [−0.23, 0.6] | 0.90 | [0.73, 0.97] | 0.89 | [0.7, 0.97] | |
CAPPFUL11 | 0.55 | [0.16, 0.84] | 0.88 | [0.7, 0.97] | 0.95 | [0.87, 0.99] | |
CAPPFUL8 | 0.25 | [−0.11, 0.68] | 0.90 | [0.73, 0.97] | 0.94 | [0.82, 0.98] | |
JHFT2 | 0.28 | [−0.093, 0.7] | 0.61 | [0.23, 0.87] | 0.88 | [0.69, 0.96] | |
JHFT3 | 0.40 | [0.01, 0.77] | 0.57 | [0.19, 0.85] | 0.88 | [0.69, 0.96] | |
JHFT7 | 0.38 | [−0.028, 0.78] | 0.70 | [0.34, 0.91] | 0.33 | [−0.076, 0.75] | |
Torso Rot | CAPPFUL4 | 0.46 | [0.063, 0.8] | 0.40 | [−0.11, 0.86] | 0.50 | [−0.023, 0.89] |
tBBT | 0.27 | [−0.1, 0.69] | 0.73 | [0.32, 0.94] | 0.62 | [0.17, 0.91] | |
AMULA10 | 0.69 | [0.35, 0.9] | 0.80 | [0.45, 0.96] | 0.85 | [0.57, 0.97] | |
AMULA16 | 0.36 | [−0.046, 0.77] | 0.63 | [0.27, 0.88] | 0.54 | [0.15, 0.84] | |
AMULA24 | −0.08 | [−0.34, 0.42] | 0.89 | [0.7, 0.97] | 0.96 | [0.89, 0.99] | |
CAPPFUL11 | 0.62 | [0.26, 0.88] | 0.62 | [0.25, 0.87] | 0.67 | [0.33, 0.9] | |
CAPPFUL8 | 0.49 | [0.094, 0.82] | 0.93 | [0.81, 0.98] | 0.89 | [0.7, 0.97] | |
JHFT2 | 0.06 | [−0.25, 0.53] | 0.68 | [0.33, 0.9] | 0.53 | [0.14, 0.83] | |
JHFT3 | 0.16 | [−0.18, 0.61] | 0.85 | [0.63, 0.96] | 0.63 | [0.27, 0.88] | |
JHFT7 | 0.49 | [0.075, 0.83] | 0.23 | [−0.15, 0.69] | 0.39 | [−0.02, 0.79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.L.; Civillico, G.; Niswander, W.; Kontson, K.L. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users. Sensors 2022, 22, 2953. https://doi.org/10.3390/s22082953
Wang SL, Civillico G, Niswander W, Kontson KL. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users. Sensors. 2022; 22(8):2953. https://doi.org/10.3390/s22082953
Chicago/Turabian StyleWang, Sophie L., Gene Civillico, Wesley Niswander, and Kimberly L. Kontson. 2022. "Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users" Sensors 22, no. 8: 2953. https://doi.org/10.3390/s22082953
APA StyleWang, S. L., Civillico, G., Niswander, W., & Kontson, K. L. (2022). Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users. Sensors, 22(8), 2953. https://doi.org/10.3390/s22082953