Head and Trunk Kinematics during Activities of Daily Living with and without Mechanical Restriction of Cervical Motion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Experimental Protocol
2.2.1. Don/Doff Jacket
2.2.2. Pick Up Coin
2.2.3. The Community Ambulation Task (CAT)
2.3. Data Acquisition and Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Peak Turning Velocity
4.2. Head–Trunk Coupling
4.3. Peak Turn Amplitude
4.4. Limitations/Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reuben, D.B.; Siu, A.L. An Objective Measure of Physical Function of Elderly Outpatients: The Physical Performance Test. J. Am. Geriatr. Soc. 1990, 38, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Renggli, D.; Graf, C.; Tachatos, N.; Singh, N.; Meboldt, M.; Taylor, W.R.; Stieglitz, L.; Daners, M.S. Wearable Inertial Measurement Units for Assessing Gait in Real-World Environments. Front. Physiol. 2020, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Schlueter, H.; El-Gohary, M.; Mattek, N.; Duncan, C.; Kaye, J.; Horak, F.B. Continuous Monitoring of Turning Mobility and Its Association to Falls and Cognitive Function: A Pilot Study. J. Gerontol. Ser. A 2016, 71, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Dibble, L.E.; Lange, M. Predicting Falls in Individuals with Parkinson Disease: A reconsideration of clinical balance measures. J. Neurol. Phys. Ther. 2006, 30, 60–67. [Google Scholar] [CrossRef]
- Behrman, A.L.; Light, K.E.; Flynn, S.M.; Thigpen, M.T. Is the functional reach test useful for identifying falls risk among individuals with Parkinson’s disease? Arch. Phys. Med. Rehabil. 2002, 83, 538–542. [Google Scholar] [CrossRef] [Green Version]
- King, L.A.; Mancini, M.; Priest, K.; Salarian, A.; Rodrigues-De-Paula, F.; Horak, F. Do Clinical Scales of Balance Reflect Turning Abnormalities in People with Parkinson’s Disease? J. Neurol. Phys. Ther. 2012, 36, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Toro, B.; Nester, C.; Farren, P. A review of observational gait assessment in clinical practice. Physiother. Theory Pract. 2003, 19, 137–149. [Google Scholar] [CrossRef]
- King, L.A.; Horak, F.B.; Mancini, M.; Pierce, D.; Priest, K.C.; Chesnutt, J.; Sullivan, P.; Chapman, J.C. Instrumenting the Balance Error Scoring System for Use with Patients Reporting Persistent Balance Problems after Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2013, 95, 353–359. [Google Scholar] [CrossRef]
- Fino, P.C.; Wilhelm, J.; Parrington, L.; Stuart, S.; Chesnutt, J.C.; King, L.A. Inertial Sensors Reveal Subtle Motor Deficits When Walking with Horizontal Head Turns after Concussion. J. Head Trauma Rehabil. 2019, 34, E74–E81. [Google Scholar] [CrossRef]
- Spain, R.; George, R.S.; Salarian, A.; Mancini, M.; Wagner, J.; Horak, F.; Bourdette, D. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012, 35, 573–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spildooren, J.; Vinken, C.; Van Baekel, L.; Nieuwboer, A. Turning problems and freezing of gait in Parkinson’s disease: A systematic review and meta-analysis. Disabil. Rehabil. 2018, 41, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S.; Dibble, L.E.; Walther, R.G.; Shelton, C.; Gurgel, R.K.; Lester, M.E. Characterization of Head-Trunk Coordination Deficits after Unilateral Vestibular Hypofunction Using Wearable Sensors. JAMA Otolaryngol. Neck Surg. 2017, 143, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S.; Dibble, L.E.; Walther, R.G.; Shelton, C.; Gurgel, R.K.; Lester, M.E. Reduced Purposeful Head Movements during Community Ambulation Following Unilateral Vestibular Loss. Neurorehabilit. Neural Repair 2018, 32, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Fino, P.C.; Parrington, L.; Walls, M.; Sippel, E.; Hullar, T.E.; Chesnutt, J.C.; King, L.A. Abnormal Turning and Its Association with Self-Reported Symptoms in Chronic Mild Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1167–1177. [Google Scholar] [CrossRef]
- Wang, L.; Zobeiri, O.A.; Millar, J.L.; Schubert, M.C.; Cullen, K.E. Head movement kinematics are altered during gaze stability exercises in vestibular schwannoma patients. Sci. Rep. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Mijovic, T.; Carriot, J.; Zeitouni, A.; Cullen, K.E. Head Movements in Patients with Vestibular Lesion: A novel approach to functional assessment in daily life setting. Otol. Neurotol. 2014, 35, e348–e357. [Google Scholar] [CrossRef]
- Howell, D.R.; Beasley, M.; Vopat, L.; Meehan, W.P. The Effect of Prior Concussion History on Dual-Task Gait following a Concussion. J. Neurotrauma 2017, 34, 838–844. [Google Scholar] [CrossRef]
- Loyd, B.J.; Saviers-Steiger, J.; Fangman, A.; Paul, S.S.; Fino, P.C.; Lester, M.E.; Dibble, L.E. Control of Linear Head and Trunk Acceleration during Gait after Unilateral Vestibular Deficits. Arch. Phys. Med. Rehabil. 2020, 102, 456–462. [Google Scholar] [CrossRef]
- Beyea, J.; McGibbon, C.A.; Sexton, A.; Noble, J.; O’Connell, C. Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed up-and-Go Test. Sensors 2017, 17, 934. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture 2016, 43, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khobkhun, F.; Hollands, M.A.; Richards, J.; Ajjimaporn, A. Can We Accurately Measure Axial Segment Coordination during Turning Using Inertial Measurement Units (IMUs)? Sensors 2020, 20, 2518. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.H.; Elshehabi, M.; Haertner, L.; Del Din, S.; Srulijes, K.; Heger, T.; Synofzik, M.; Hobert, M.A.; Faber, G.S.; Hansen, C.; et al. Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson’s Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back. Front. Neurol. 2017, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.S.; Walther, R.G.; Beseris, E.A.; Dibble, L.E.; Lester, M.E. Feasibility and Validity of Discriminating Yaw Plane Head-on-Trunk Motion Using Inertial Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Shirley Ryan Ability Lab. 2 Minute Walk Test. 2013. Available online: https://www.sralab.org/rehabilitation-measures/2-minute-walk-test#older-adults-and-geriatric-care (accessed on 29 March 2022).
- Bohannon, R.W.; Wang, Y.-C.; Gershon, R.C. Two-Minute Walk Test Performance by Adults 18 to 85 Years: Normative Values, Reliability, and Responsiveness. Arch. Phys. Med. Rehabil. 2015, 96, 472–477. [Google Scholar] [CrossRef]
- Haertner, L.; Elshehabi, M.; Zaunbrecher, L.; Pham, M.H.; Maetzler, C.; Van Uem, J.M.T.; Hobert, M.A.; Hucker, S.; Nussbaum, S.; Berg, D.; et al. Effect of Fear of Falling on Turning Performance in Parkinson’s Disease in the Lab and at Home. Front. Aging Neurosci. 2018, 10, 78. [Google Scholar] [CrossRef] [PubMed]
Characteristics (n = 10) | Mean ± Standard Deviation |
---|---|
Female/male | 5/5 |
Age (years) | 39.5 ± 12.47 |
Height (cm) | 174.75 ± 9.37 |
Weight (kg) | 75.02 ± 15.48 |
2MWT (m) | 228.26 ± 15.23 |
Turning Characteristics | Plane of Motion | No Collar | Collar | ||
---|---|---|---|---|---|
Head Rotational Velocity (Degrees/Second) | Mean | SD | Mean | SD | |
Coin task | Pitch | 110.63 | 22.27 | 122.09 | 25.86 |
Jacket task | Yaw | 150.6 | 47.58 | 112.1 | 20.63 |
CAT | Pitch | 83.18 | 10.08 | 67.56 | 4.94 |
CAT | Yaw | 138.68 | 14.03 | 89.2 | 7.91 |
Head Rotation Amplitude (degrees) | Mean | SD | Mean | SD | |
Coin task | Pitch | 41.18 | 10.87 | 61.16 | 22.56 |
Jacket task | Yaw | 54.06 | 17.46 | 50.14 | 16.94 |
CAT | Pitch | 17.74 | 3.5 | 12.83 | 3.06 |
CAT | Yaw | 41.6 | 4.16 | 28.78 | 4.85 |
Trunk Rotational Velocity (degrees/second) | Mean | SD | Mean | SD | |
Coin task | Pitch | 139.07 | 22.56 | 145.21 | 13.13 |
Jacket task | Yaw | 94.43 | 18.48 | 107.46 | 20.74 |
CAT | Pitch | 77.36 | 9.23 | 74.25 | 7.05 |
CAT | Yaw | 88.31 | 8.92 | 89.62 | 8.23 |
Trunk Rotation Amplitude (degrees) | Mean | SD | Mean | SD | |
Coin | Pitch | 72.92 | 17.40 | 77.12 | 17.36 |
Jacket | Yaw | 37.22 | 14.94 | 52 | 13.3 |
CAT | Pitch | 9.49 | 1.94 | 8.86 | 1.4 |
CAT | Yaw | 25.65 | 2.27 | 29.97 | 4.81 |
Head–Trunk Correlation | CC mean/SD | CC mean/SD | |||
Coin | Pitch | 0.65/0.13 | 0.87/0.12 | ||
Jacket task | Yaw | 0.66/0.12 | 0.90/0.13 | ||
CAT | Yaw | 0.52/0.05 | 0.93/0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weston, A.R.; Loyd, B.J.; Taylor, C.; Hoppes, C.; Dibble, L.E. Head and Trunk Kinematics during Activities of Daily Living with and without Mechanical Restriction of Cervical Motion. Sensors 2022, 22, 3071. https://doi.org/10.3390/s22083071
Weston AR, Loyd BJ, Taylor C, Hoppes C, Dibble LE. Head and Trunk Kinematics during Activities of Daily Living with and without Mechanical Restriction of Cervical Motion. Sensors. 2022; 22(8):3071. https://doi.org/10.3390/s22083071
Chicago/Turabian StyleWeston, Angela R., Brian J. Loyd, Carolyn Taylor, Carrie Hoppes, and Leland E. Dibble. 2022. "Head and Trunk Kinematics during Activities of Daily Living with and without Mechanical Restriction of Cervical Motion" Sensors 22, no. 8: 3071. https://doi.org/10.3390/s22083071
APA StyleWeston, A. R., Loyd, B. J., Taylor, C., Hoppes, C., & Dibble, L. E. (2022). Head and Trunk Kinematics during Activities of Daily Living with and without Mechanical Restriction of Cervical Motion. Sensors, 22(8), 3071. https://doi.org/10.3390/s22083071