Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning
Abstract
:1. Introduction
2. Development
2.1. Spatial Data Acquisition and Satellite Imagery
2.2. Machine Learning and Processing
2.3. GeoDMA and TerraVIEW for Remote Sensing
2.4. Weka Applied to the Spatial and Geographic Context
2.5. Deep Learning and Object Detection
3. Methodology
3.1. Remote Sensing Classification
3.2. Active Training and Machine Learning
4. Materials and Methods
4.1. Study Area
4.2. Materials
4.3. Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shankaranarayanan, G.; Blake, R. From Content to Context: The Evolution and Growth of Data Quality Research. J. Data Inf. Qual. 2017, 8, 9. [Google Scholar] [CrossRef]
- Li, D.; Gao, X.; Deng, Y. A Generalized Expression for Information Quality of Basic Probability Assignment. IEEE Access 2019, 7, 174734–174739. [Google Scholar] [CrossRef]
- Lin, G.; Jing, G.; Fang-Fang, D. Evaluation method of enterprise information quality based on QFD. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 16–18 April 2011; pp. 325–328. [Google Scholar]
- Tseng, Y.H.; Lin, C.J.; Lin, Y.I. Text mining techniques for patent analysis. Inf. Process. Manag. 2007, 43, 1216–1247. [Google Scholar] [CrossRef]
- Madnick, S.E.; Wang, R.Y.; Lee, Y.W.; Zhu, H. Overview and Framework for Data and Information Quality Research. J. Data Inf. Qual. 2009, 1, 2. [Google Scholar] [CrossRef]
- Naumann, F.; Rolker, C. Assessment Methods for Information Quality Criteria. Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität zu Berlin, Berlin, Germany, 2005. [Google Scholar] [CrossRef]
- Wang, R.Y.; Strong, D.M. Beyond Accuracy: What Data Quality Means to Data Consumers. J. Manage. Inf. Syst. 1996, 12, 5–33. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Warren, S.; Puestow, T.; Salehi, B.; Brisco, B. Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John’s, NL, Canada. J. Environ. Manag. 2021, 280, 111676. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, D.; Bennie, J.; Anderson, K. Monitoring spring phenology of individual tree crowns using drone-acquired NDVI data. Remote Sens. Ecol. Conserv. 2021, 7, 227–244. [Google Scholar] [CrossRef]
- Mahdavi Saeidi, A.; Babaie Kafaky, S.; Mataji, A. Detecting the development stages of natural forests in northern Iran with different algorithms and high-resolution data from GeoEye-1. Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef]
- Alphan, H.; Çelik, N. Monitoring changes in landscape pattern: Use of Ikonos and Quickbird images. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef]
- Albuquerque, R.; Vieira, D.; Ferreira, M.; Soares, L.; Olsen, S.; Araujo, L.; Vicente, L.; Tymus, J.; Balieiro, C.; Matsumoto, M.; et al. Mapping Key Indicators of Forest Restoration in the Amazon Using a Low-Cost Drone and Artificial Intelligence. Remote Sens. 2022, 14, 830. [Google Scholar] [CrossRef]
- Habibie, M.I.; Ahamed, T.; Noguchi, R.; Matsushita, S. Deep Learning Algorithms to determine Drought prone Areas Using Remote Sensing and GIS. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 7–8 December 2020; pp. 69–73. [Google Scholar] [CrossRef]
- Hosseiny, B.; Mahdianpari, M.; Brisco, B.; Mohammadimanesh, F.; Salehi, B. WetNet: A Spatial–Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Klein, V.B.; Todesco, J.L. Um Modelo Conceitual para uso de Big Data e Open Data nas Smart Cities. Intern. J. Knowl. Eng. Manag. 2017, 6, 28–50. [Google Scholar] [CrossRef]
- Wagstaff, K.L. Machine Learning that Matters. In Proceedings of the International Conference on Machine Learning, Edinburgh, UK, 26 June–1 July 2012; pp. 529–536. [Google Scholar]
- Souza, J.; Francisco, A.; Piekarski, C.; Prado, G.; Oliveira, L. Data Mining and Machine Learning in the Context of Sustainable Evaluation: A Literature Review. IEEE Lat. Am. Trans. 2019, 17, 372–382. [Google Scholar] [CrossRef]
- Mei, J.; Jiang, X.; Cai, J. Learning local feature representation from matching, clustering and spatial transform. J. Vis. Commun. Image Represent. 2019, 63, 102601. [Google Scholar] [CrossRef]
- Gonçalves, V.P.; Ribeiro, E.A.W.; Imai, N.N. Mapping Areas Invaded by Pinus sp. from Geographic Object-Based Image Analysis (GEOBIA) Applied on RPAS (Drone) Color Images. Remote Sens. 2020, 12, 2805. [Google Scholar] [CrossRef]
- Bayazit, N. Investigating Design: A Review of Forty Years of Design Research. Des. Issues 2004, 20, 16–29. [Google Scholar] [CrossRef]
- Korting, T.S. GEODMA: A Toolbox Integrating Data Mining with Object-Based and Multi-Temporal Analysis of Satellite Remotely Sensed Imagery. Ph.D. Thesis, INPE, Sao Jose dos Campos, Brazil, 2012. [Google Scholar]
- Korting, T.S.; Fonseca, L.M.G.; Camara, G. GeoDMA-Geographic Data Mining Analyst. J. Comput. Geosci. 2013, 57, 133–145. [Google Scholar] [CrossRef]
- Maretto, R.V.; Korting, T.S.; Fonseca, L.M.G. An Extensible and Easy-to-use Toolbox for Deep Learning Based Analysis of Remote Sensing Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2019; pp. 9815–9818. [Google Scholar]
- Braz, A.M.; Korting, T.S.; Martins, A.P.; Braz, A.M. Geobia E Mineração de Dados para Classificação de Imagens de Altíssima Resolução Espacial. Estud. Geográficos Rev. Eletrônica Geogr. 2021, 19, 209–224. [Google Scholar] [CrossRef]
- Kanjir, U.; Veljanovski, T.; Oštir, K. Multilevel Segmentation of Soil Sealing in Urban Areas. In Proceedings of the Asian Conference on Remote Sensing (ACRS), Taipei, Taiwan, 3–7 October 2011; pp. 1–7. [Google Scholar]
- Liu, W.T.H. Aplicacoes de Sensoriamento Remoto. In Plastics; Oficina de Textos: Rio de Janeiro, Brazil, 2019; pp. 10–100. [Google Scholar]
- Rajbhandari, S.; Aryal, J.; Osborn, J.; Lucieer, A.; Musk, R. Leveraging Machine Learning to Extend Ontology-Driven Geographic Object-Based Image Analysis (O-GEOBIA): A Case Study in Forest-Type Mapping. Remote Sens. 2019, 11, 503. [Google Scholar] [CrossRef] [Green Version]
- Zanotta, D.C.; Ferreira, M.P.; Zortea, M. Processamento de Imagens de Satélite. In Plastics; Blucher: São Paulo, Brasil, 2019; pp. 107–301. [Google Scholar]
- Barbosa, A.L.; Loureiro, G.; Manea, S.; Duarte, J.M.L.; Garbi, G.P. Ranking of Fault Mitigation Techniques for Spatial Radiation in Commercial Off-the-Shelf Field Programmable Gate Array. IEEE Lat. Am. Trans. 2020, 18, 736–743. [Google Scholar] [CrossRef]
- Obando, E.D.; Carvajal, S.X.; Agudelo, J.P. Solar Radiation Prediction Using Machine Learning Techniques: A Review. IEEE Lat. Am. Trans. 2019, 17, 684–697. [Google Scholar] [CrossRef]
- Pletsch, M.A.; Körting, T. Information mining for automatic search in remote sensing image catalogs. Rev. Bras. Cartogr. 2019, 70, 1860–1884. [Google Scholar] [CrossRef]
- Cesconetto, J.; Augusto Silva, L.; Bortoluzzi, F.; Navarro-Cáceres, M.; Zeferino, C.A.; Leithardt, V.R.Q. PRIPRO—Privacy Profiles: User Profiling Management for Smart Environments. Electronics 2020, 9, 1519. [Google Scholar] [CrossRef]
- de Moraes Rossetto, A.G.; Sega, C.; Leithardt, V.R.Q. An Architecture for Managing Data Privacy in Healthcare with Blockchain. Sensors 2022, 22, 8292. [Google Scholar] [CrossRef]
- Lima, R.; Filippetto, A.S.; Heckler, W.; Barbosa, J.L.V.; Leithardt, V.R.Q. Towards ubiquitous requirements engineering through recommendations based on context histories. PeerJ Comput. Sci. 2022, 8, 794. [Google Scholar] [CrossRef]
- Mehta, R.; Kumar, A. An Analysis of Hybrid Layered Classification Algorithms for Object Recognition. IOSR J. Comput. Eng. 2018, 20, 57–64. [Google Scholar] [CrossRef]
- Yahav, I.; Shehory, O.; Schwartz, D. Comments Mining with TF-IDF: The Inherent Bias and Its Removal. IEEE Trans. Knowl. Data Eng. 2019, 31, 437–450. [Google Scholar] [CrossRef]
- Khorshid, M.M.H.; Abou-El-Enien, T.H.M.; Soliman, G.M.A. A Comparison among Support Vector Machine and other Machine Learning Classification Algorithms. Int. J. Comput. Sci. 2015, 3, 25–35. [Google Scholar]
- Moen, E.; Bannon, D.; Kudo, T.; Graf, W.; Covert, M.; Valen, D.V. Deep learning for cellular image analysis. Nat. Methods 2019, 16, 1233. [Google Scholar] [CrossRef]
- Giolo, S.R. Introdução à análise de dados categóricos com aplicações. In Plastics; Blucher: São Paulo, Brasil, 2017; pp. 75–190. [Google Scholar]
- Hulten, G.; Spencer, L.; Domingos, P. Mining time-changing data streams. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining SIGKDD, San Francisco, CA, USA, 26–29 August 2001; pp. 97–106. [Google Scholar]
- Bogorny, V.; Avancini, H.; de Paula, B.C.; Rocha Kuplich, C.; Alvares, L.O. Weka-STPM: A Software Architecture and Prototype for Semantic Trajectory Data Mining. Trans. GIS 2011, 15, 227–248. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques. In Plastics; Kaufmann Morg.: Cambridge, MA, USA, 2016; pp. 515–621. [Google Scholar]
- Damacena, A.P.C. Avaliação da qualidade de dados geoespaciais. In Plastics, 2nd ed.; IBGE: Rio de Janeiro, Brasil, 2019; pp. 41–52. [Google Scholar]
- Moraes, A.F.; Bastos, L.C.; Koehler, F.S.; Kracik, M.S.; Moraes, N.I.G. Open integration for knowledge quality distributed: Approach to geospatial data collect in sustainable cities. Braz. J. Dev. 2019, 5, 31219–31236. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Rampersad, H. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Total Performance Scorecard; Routledge: London, UK, 2020; pp. 159–183. [Google Scholar] [CrossRef]
- Doll, P.; Girshick, R.; Ai, F. Mask R-CNN. arXiv 2017, arXiv:1703.06870. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Silva, L.A.; Sanchez San Blas, H.; Peral García, D.; Sales Mendes, A.; Villarubia González, G. An Architectural Multi-Agent System for a Pavement Monitoring System with Pothole Recognition in UAV Images. Sensors 2020, 20, 6205. [Google Scholar] [CrossRef]
- Pham, M.T.; Courtrai, L.; Friguet, C.; Lefèvre, S.; Baussard, A. YOLO-Fine: One-Stage Detector of Small Objects Under Various Backgrounds in Remote Sensing Images. Remote Sens. 2020, 12, 2501. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Li, W.; Li, W.; Yang, F.; Wang, P. Multi-Scale Object Detection in Satellite Imagery Based On YOLT. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 162–165. [Google Scholar] [CrossRef]
- Xu, D.; Wu, Y. MRFF-YOLO: A Multi-Receptive Fields Fusion Network for Remote Sensing Target Detection. Remote Sens. 2020, 12, 3118. [Google Scholar] [CrossRef]
- Schreiber, G.; Akkermans, H.; Anjewierden, A.; Hoog, R.; Shadbolt, N.; Velde, W.V.; Wielinga, B. Knowledge Engineering and Management—The CommonKADS Methodology. In Plastics; MIT Press: Cambridge, MA, USA, 2000; pp. 69–121. [Google Scholar]
- Dresch, A.; Lacerda, D.P.; Júnior, J.A.A. Design Science Research: Método de pesquisa para a engenharia de produção. In Plastics; Bookman: Porto Alegre, Brazil, 2015; pp. 22–102. [Google Scholar]
- Rajyalakshmi, D.; Raju, K.K.; Varma, G.P.S. Taxonomy of Satellite Image and Validation Using Statistical Inference. In Proceedings of the IEEE 6th Intern Conference on Advanced Computing, Toulouse, France, 18–21 July 2016; pp. 352–361. [Google Scholar]
- Li, Y.; Fang, Y.; Cheng, R.; Zhang, W. Spatial Pattern Matching: A New Direction for Finding Spatial Objects. ACM SIGSPATIAL Spec. 2019, 11, 3–12. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef] [PubMed]
- Kotikot, S.M.; Kar, B.; Omitaomu, O.A. A Geospatial Framework Using Multicriteria Decision Analysis for Strategic Placement of Reserve Generators in Puerto Rico. IEEE Trans. Eng. Manag. 2020, 67, 659–669. [Google Scholar] [CrossRef]
- Gimenez, F.; Zerbini, C.; Riva, G. Extending SMS Service Coverage in Rural Areas by using LoRa Communication Technology. IEEE Lat. Am. Trans. 2020, 18, 214–222. [Google Scholar] [CrossRef]
- Huai, M.; Miao, C.; Li, Y.; Suo, Q.; Zhang, A. Learning Distance Metrics from Probabilistic Information. ACM Trans. Knowl. Discov. Data 2020, 14, 53–86. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Körting, T.S.; de Queiroz, G.R.; Sales, C.P.; Silva, L.A.R.d. Detecting Center Pivots in Matopiba Using Hough Transform and Web Time Series Service. In Proceedings of the 2020 IEEE Latin American GRSS ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 189–194. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A moen approach. In Plastics; Prentice Hall: Hoboken, NJ, USA, 2009; pp. 149–297. [Google Scholar]
- Zhang, Q.; Zhou, J.; He, J.; Xiaodong, C.; Zhang, Z.S.B. A shell dataset, for shell features extraction and recognition. Sci. Data 2019, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Erba, D.A.; Loch, C. Cadastro técnico multifinalitário rural e urbano. In Plastics; Lincoln: Cambridge, MA, USA, 2007; pp. 50–108. [Google Scholar]
- Ferreira, M.C. Iniciação à Análise Geoespacial: Teoria, téCnicas e Exemplos para Geoprocessamento; Unesp: Sao Paulo, Brazil, 2014; pp. 297–333. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System, 2022. Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 15 December 2022).
- Awrangjeb, M.; Ravanbakhsh, M.; Fraser, C.S. Automatic detection of residential buildings using LIDAR data and multispectral imagery. J. Photogramm. Remote Sens. 2010, 65, 457–467. [Google Scholar] [CrossRef]
- Chenthamarakshan, V.; Desphande, P.; Krishnapuram, R.; Varadarajan, R.; Stolze, K. WYSIWYE: An Algebra for Expressing Spatial and Textual Rules for Visual Information Extraction; Cornell University Computer Sciense: Ithaca, NY, USA, 2016. [Google Scholar]
Satellite | Segmentation | Generated Records | ||
---|---|---|---|---|
CBERS Sensor Banda | Contrast Method | CPU Time i7 6.5 GB GNU/Linux | Similarity | Object Detection |
PAN5M—Band Espec = 1 | Linear | 327 s 70 | 0.050 | 1,066,788 |
390 s 46 | 0.045 | 1,345,492 | ||
435 s 84 | 0.040 | 1,639,031 | ||
464 s 94 | 0.035 | 2,158,357 | ||
516 s 02 | 0.030 | 2,770,752 | ||
572 s 11 | 0.025 | 3,760,484 |
Algorithm | Training (100 Objects) % | Training (1000 Objects) % | Training (15,000 Objects) % | Performance Evaluation (Final) % |
---|---|---|---|---|
J48 | 52 | 77.9 | 80.4067 | 85.2002 |
IBk | 78 | 78.2 | 80.4467 | 81.1799 |
Hoeffding Tree | 76 | 77.1 | 80.3733 | 79.4800 |
OneR | 75 | 77.9 | 80.3600 | 77.8591 |
NaiveBayes | 76 | 77.1 | 79.4133 | 75.9149 |
Nr | Weka 3.9.3 Classifiers | Time | Correct Instances | % Hits | % Kappa |
---|---|---|---|---|---|
1 | J48 | 0.30 s | 42.0250 | 85.2002% | 76.11% |
2 | IBk | 3 m 34 s | 40.0420 | 81.1799% | 69.97% |
3 | Hoeffding Tree | 0.69 s | 39.2030 | 79.4800% | 66.54% |
4 | OneR | 0.03 s | 38.4040 | 77.8591% | 63.75% |
5 | NaiveBayes | 0.04 s | 37.4450 | 75.9149% | 62.48% |
ID | Min | Max | Mean |
---|---|---|---|
2128 | 386.000000 | 511.000000 | 426.769231 |
2135 | 241.000000 | 724.000000 | 425.036585 |
2240 | 235.000000 | 631.000000 | 532.342541 |
2302 | 326.000000 | 692.000000 | 531.554622 |
2398 | 27.000000 | 556.000000 | 355.121339 |
2999 | 310.000000 | 664.000000 | 551.215962 |
3056 | 385.000000 | 645.000000 | 553.728000 |
3075 | 460.000000 | 650.000000 | 596.877160 |
3116 | 260.000000 | 526.000000 | 426.401042 |
3144 | 372.000000 | 529.000000 | 436.227848 |
3732 | 218.000000 | 638.000000 | 425.622951 |
3767 | 270.000000 | 521.000000 | 391.483974 |
3768 | 416.000000 | 584.000000 | 529.207207 |
3867 | 229.000000 | 555.000000 | 398.095023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.A.; Sales Mendes, A.; Sánchez San Blas, H.; Caetano Bastos, L.; Leopoldo Gonçalves, A.; Fabiano de Moraes, A. Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning. Sensors 2023, 23, 138. https://doi.org/10.3390/s23010138
Silva LA, Sales Mendes A, Sánchez San Blas H, Caetano Bastos L, Leopoldo Gonçalves A, Fabiano de Moraes A. Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning. Sensors. 2023; 23(1):138. https://doi.org/10.3390/s23010138
Chicago/Turabian StyleSilva, Luis Augusto, André Sales Mendes, Héctor Sánchez San Blas, Lia Caetano Bastos, Alexandre Leopoldo Gonçalves, and André Fabiano de Moraes. 2023. "Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning" Sensors 23, no. 1: 138. https://doi.org/10.3390/s23010138
APA StyleSilva, L. A., Sales Mendes, A., Sánchez San Blas, H., Caetano Bastos, L., Leopoldo Gonçalves, A., & Fabiano de Moraes, A. (2023). Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning. Sensors, 23(1), 138. https://doi.org/10.3390/s23010138