Proposal: Apparatus for Sensing the Effect of Surface Roughness on the Surface Resistance of Metals
Abstract
:1. Introduction
2. Measurement Method
3. Measurement System: Set-Up and Performance Analysis
3.1. Measurement Set-Up
3.2. Uncertainty Analysis
- noise effect on fit precision/accuracy: the uncertainty given by the electrical noise on the measured S-parameters is evaluated by the fit residuals variance [34] yielding 0.07%. The amplitude is evaluated without the transmission line calibration applied in order to separate the two contributions. The same is obtained by acquiring several resonance curves all in the same environmental condition and evaluating the Q standard deviation. The stability of the resonator was evaluated by repeating the Q measurements in a 3.5 h time period while keeping the room temperature as stable as possible. The 800 repeated measurements are shown in Figure 2. From these repetitions, we obtained and an experimental standard deviation of the sample of . Hence, .
- Calibration: the resonance curves are acquired, then a full 12-term standard Short-Open-Load-Through calibration procedure is performed. With the calibration applied it is possible to evaluate the . To evaluate how propagates to we conducted a Monte Carlo simulation with 1000 noiseless resonance curves randomly varying for each iteration 1601 points in the uncertainty limits given in the vector network analyzer datasheet. In particular, in our measurement conditions, 0.2 dB and . For the simulation we considered uniformly distributed points between 0 and the declared upper uncertainty limit. The simulated curves are then fitted and the standard deviation of the measured Q allows us to assess .
- Measurement repeatability: we test the Q repeatability by performing 20 measurements, in each one mounting and disassembling the metal sample on the resonator. Thanks to the newly designed resonator, a low standard deviation of 0.11% is obtained. The Q-factor measurement repetitions are shown in Figure 3.
3.3. Differential R Measurement—End Wall Perturbation
3.4. Method Applicability Study for Surface Roughness Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menshykau, D.; Streeter, I.; Compton, R.G. Influence of Electrode Roughness on Cyclic Voltammetry. J. Phys. Chem. C Nanomater. Interfaces 2008, 112, 14428–14438. [Google Scholar] [CrossRef]
- Jacobse, L.; Rost, M.J.; Koper, M.T.M. Atomic-Scale Identification of the Electrochemical Roughening of Platinum. ACS Cent. Sci. 2019, 5, 1920–1928. [Google Scholar] [CrossRef]
- Jiang, K.; Huang, Y.; Zeng, G.; Toma, F.M.; Goddard, W.A., III; Bell, A.T. Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu. ACS Energy Lett. 2020, 5, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Dayan, A.; Huang, Y.; Schuchinsky, A. Passive Intermodulation at Contacts of Rough Conductors. Electron. Mater. 2022, 3, 65–81. [Google Scholar] [CrossRef]
- Baron, P.; Lenz, P.; Schomer, M.; Koch, K.P.; Wittmann, A.; Fischer, G. Surface Roughness and Its Structural Orientation Caused by Internal Microstructural Changes in Mechanically Stressed Copper Conductors. J. Mater. Sci. 2022, 57, 15549–15559. [Google Scholar] [CrossRef]
- Yang, F.Y.; Dai, J.; Zhang, P.; Wang, N.; Li, Z.Q. A Closed-Circulation System for Chemical Polishing of the 1.3-GHz Single-Cell Copper Cavity Substrate for Niobium Sputtering. J. Instrum. 2021, 16, P06031. [Google Scholar] [CrossRef]
- Wu, G.; Ge, M.; Kneisel, P.; Zhao, K.; Ozelis, J.; Sergatskov, D.; Cooper, C. Investigations of Surface Quality and SRF Cavity Performance. arXiv 2012, arXiv:1206.6331. [Google Scholar]
- Bennett, J.M. Recent developments in surface roughness characterization. Meas. Sci. Technol. 1992, 3, 1119. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, F.; Ma, S.; Dong, L. Review of Surface Profile Measurement Techniques Based on Optical Interferometry. Opt. Lasers Eng. 2017, 93, 164–170. [Google Scholar] [CrossRef]
- Novacam Application Note for Industry. Surface Characterization and Roughness Measurement; Document: AN-ROUGHNESS-2.1; Novacam Technologies Inc.: Montreal, QC, Canada, 2021. [Google Scholar]
- Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K. Microwave Electronics: Measurement and Material Characterization; Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ansuinelli, P.; Schuchinsky, A.G.; Frezza, F.; Steer, M.B. Passive Intermodulation Due to Conductor Surface Roughness. IEEE Trans. Microw. Theory Tech. 2018, 66, 688–699. [Google Scholar] [CrossRef]
- Horn, A.F.; Reynolds, J.W.; Rautio, J.C. Conductor Profile Effects on the Propagation Constant of Microstrip Transmission Lines. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Shlepnev, Y.; Nwachukwu, C. Roughness Characterization for Interconnect Analysis. In Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, 14–19 August 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Maxwell, E. Conductivity of metal surfaces at microwave frequencies. J. Appl. Phys. 1947, 18, 629–638. [Google Scholar]
- Tischer, F. Effect of surface roughness on surface resistance of plane copper surfaces at millimetre waves. Proc. Inst. Electr. Eng 1974, 121, 333–336. [Google Scholar] [CrossRef]
- Garcia, C.; Rumpf, R.; Tsang, H.; Barton, J. Effects of extreme surface roughness on 3d printed horn antenna. Electron. Lett. 2013, 49, 734–736. [Google Scholar] [CrossRef]
- Shitvov, A.P.; Zelenchuk, D.E.; Schuchinsky, A.G.; Fusco, V.F. Studies on passive intermodulation phenomena in printed and layered transmission lines. In Proceedings of the High Frequency Postgraduate Student Colloquium (IEEE Cat. No. 05TH8848), Leeds, UK, 5–6 September 2005; pp. 7–10. [Google Scholar] [CrossRef]
- Degarmo, E.P.; Black, J.T.; Kohser, R.A.; Klamecki, B.E. Materials and Process in Manufacturing; Wiley and Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Saad, T.S. Microwave Engineers’ Handbook; Artech House Publishers: Norwood, MA, USA, 1971. [Google Scholar]
- Holloway, C.L.; Kuester, E.F. Power loss associated with conducting and superconducting rough interfaces. IEEE Trans. Microw. Theory 2000, 48, 1601–1610. [Google Scholar] [CrossRef]
- Matsushima, A.; Nakata, K. Power loss and local surface impedance associated with conducting rough interfaces. Electr. Commun. Jpn. (Part II Electron.) 2006, 89, 1–10. [Google Scholar] [CrossRef]
- Gu, X.; Tsang, L.; Braunisch, H. Modeling effects of random rough interface on power absorption between dielectric and conductive medium in 3-D problem. IEEE Trans. Microw. Theory 2007, 55, 511–517. [Google Scholar] [CrossRef]
- Biot, M.A. Some new aspects of the reflection of electromagnetic waves on a rough surface. J. Appl. Phys. 2007, 28, 1455–1463. [Google Scholar] [CrossRef]
- Wait, J. Guiding of electromagnetic waves by uniformly rough surfaces. IRE Trans. Anten. Propag. 1959, 7, 154–162. [Google Scholar] [CrossRef]
- Morgan, S.P., Jr. Effect of surface roughness on eddy current losses at microwave frequencies. J. Appl. Phys. 1949, 20, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Groiss, S.; Bardi, I.; Biro, O.; Preis, K.; Richter, K.R. Parameters of lossy cavity resonators calculated by the finite element method. IEEE Trans. Magn. 1996, 32, 894–897. [Google Scholar] [CrossRef]
- Zhang, P. Effects of Surface Roughness on Electrical Contact, RF Heating and Field Enhancement. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2012. [Google Scholar]
- Goudket, P.; Roper, M.; Malyshev, O.; Wilde, S.; Valizadeh, R.; Gurran, L.; Burt, G. Surface resistance RF measurements of materials used for accelerator vacuum chambers. In Proceedings of the 6th International Particle Accelerator Conference, Richmond, VA, USA, 3–8 May 2015; pp. 3235–3238. [Google Scholar]
- Alimenti, A.; Pompeo, N.; Torokhtii, K.; Spina, T.; Flükiger, R.; Muzzi, L.; Silva, E. Microwave measurements of the high magnetic field vortex motion pinning parameters in Nb3Sn. Supercond. Sci. Technol. 2020, 34, 014003. [Google Scholar] [CrossRef]
- Pompeo, N.; Alimenti, A.; Torokhtii, K.; Bartolomé, E.; Palau, A.; Puig, T.; Augieri, A.; Galluzzi, V.; Mancini, A.; Celentano, G.; et al. Intrinsic anisotropy and pinning anisotropy in nanostructured YBa2Cu3O7-δ from microwave measurements. Supercond. Sci. Technol. 2020, 33, 044017. [Google Scholar] [CrossRef]
- Pompeo, N.; Alimenti, A.; Torokhtii, K.; Sylva, G.; Braccini, V.; Silva, E. Microwave properties of Fe(Se,Te) thin films in a magnetic field: Pinning and flux flow. J. Phys. Conf. Ser. 2020, 1559, 012055. [Google Scholar] [CrossRef]
- Torokhtii, K.; Pompeo, N.; Silva, E.; Alimenti, A. Optimization of Q-factor and resonance frequency measurements in partially calibrated resonant systems. Meas. Sens. 2021, 18, 100314. [Google Scholar] [CrossRef]
- Alimenti, A.; Torokhtii, K.; Silva, E.; Pompeo, N. Challenging microwave resonant measurement techniques for conducting material characterization. Meas. Sci. Technol. 2019, 30, 065601. [Google Scholar] [CrossRef]
- Torokhtii, K.; Alimenti, A.; Pompeo, N.; Leccese, F.; Orsini, F.; Scorza, A.; Sciuto, S.A.; Silva, E. Q-factor of microwave resonators: Calibrated vs. uncalibrated measurements. J. Phys. Conf. Ser. 2018, 1065, 052027. [Google Scholar] [CrossRef] [Green Version]
- Mazierska, J.; Wilker, C. Accuracy issues in surface resistance measurements of high temperature superconductors using dielectric resonators (corrected). IEEE Trans. Appl. Supercond. 2001, 11, 4140–4147. [Google Scholar] [CrossRef]
- Krupka, J.; Nguyen, D.; Mazierska, J. Microwave and RF methods of contactless mapping of the sheet resistance and the complex permittivity of conductive materials and semiconductors. Meas. Sci. Technol. 2011, 22, 085703. [Google Scholar] [CrossRef]
- International Standard 61788-15; Superconductivity—Part 15: Electronic Characteristic Measurements—Intrinsic Surface Impedance of Superconductor Films at Microwave Frequencies. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2011.
- Krupka, J.; Derzakowski, K.; Tobar, M.; Hartnett, J.; Geyer, R.G. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 1999, 10, 387–392. [Google Scholar] [CrossRef]
- Vorburger, T.V.; Rhee, H.G.; Renegar, T.B.; Song, J.F.; Zheng, A. Comparison of optical and stylus methods for measurement of surface texture. Int. J. Adv. Manuf. Technol. 2007, 33, 110–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torokhtii, K.; Alimenti, A.; Vidal García, P.; Pompeo, N.; Silva, E. Proposal: Apparatus for Sensing the Effect of Surface Roughness on the Surface Resistance of Metals. Sensors 2023, 23, 139. https://doi.org/10.3390/s23010139
Torokhtii K, Alimenti A, Vidal García P, Pompeo N, Silva E. Proposal: Apparatus for Sensing the Effect of Surface Roughness on the Surface Resistance of Metals. Sensors. 2023; 23(1):139. https://doi.org/10.3390/s23010139
Chicago/Turabian StyleTorokhtii, Kostiantyn, Andrea Alimenti, Pablo Vidal García, Nicola Pompeo, and Enrico Silva. 2023. "Proposal: Apparatus for Sensing the Effect of Surface Roughness on the Surface Resistance of Metals" Sensors 23, no. 1: 139. https://doi.org/10.3390/s23010139
APA StyleTorokhtii, K., Alimenti, A., Vidal García, P., Pompeo, N., & Silva, E. (2023). Proposal: Apparatus for Sensing the Effect of Surface Roughness on the Surface Resistance of Metals. Sensors, 23(1), 139. https://doi.org/10.3390/s23010139