Survey on Multi-Objective Task Allocation Algorithms for IoT Networks
Abstract
:1. Introduction
2. Task Allocation Problem
2.1. Static Task Allocation
2.1.1. Static Network Model
2.1.2. Static Task Model
2.2. Dynamic Task Allocation
2.2.1. Device Mobility
2.2.2. Device Failures
2.3. Task Allocation Problem
2.4. Task Allocation Optimization Metrics
2.4.1. Network Lifetime
2.4.2. Energy Consumption
2.4.3. Latency
2.4.4. Availability
2.4.5. Reliability
3. Methodologies for the Task Allocation Problem
3.1. Multi-Objective Optimization
3.2. Base TAP Algorithm
3.3. Metaheuristics
Algorithm 1: Base procedure for solving the TAP |
3.3.1. Evolutionary Algorithms
3.3.2. Ant Colony Optimization
Algorithm 2: Base Evolutionary Algorithm |
3.3.3. Particle Swarm Optimization
3.4. Collaborative and Antagonistic Game Theory-Based Algorithms
3.4.1. Consensus Algorithms
3.4.2. Auction Algorithms
3.4.3. Stackelberg Game
3.5. Reinforcement Learning
Deep Reinforcement Learning
3.6. Other Methods
3.6.1. Linear Programming
3.6.2. Hill Climbing
4. State of the Art on the Task Allocation Problem for IoT
4.1. Comparison Criteria
4.1.1. Node Failures
4.1.2. Node Mobility
4.1.3. Multi-Objective Optimization
4.2. Comparison of the State of the Art
4.3. Metaheuristic Approaches
4.4. Cooperative and Antagonistic Methods
4.5. Reinforcement Learning
4.6. Other Approaches
5. Open Challenges
5.1. Node Failures
5.2. Node Mobility
5.3. Multi Objective Optimization
5.4. Metrics
5.5. General Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Availability |
L | Latency |
NL | Network Lifetime |
R | Reliability |
Position Constraint | |
Communication Cost | |
ACO | Ant-Colony-Optimization |
DAG | Directed Acyclic Graph |
DRL | Deep Reinforcement Learning |
EA | Evolutionary Algorithm |
EC | Energy Consumption |
GNN | Graph Neural Network |
IoT | Internet-of-Things |
LP | Linear Programming |
MOO | Multi-Objective Optimisation |
MOP | Multi-Objective Problem |
NN | Neural Network |
PSO | Particle Swarm Optimization |
RL | Reinforcement Learning |
TAP | Task Allocation Problem |
WSN | Wireless Sensor Network |
References
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Yuan, M.; Jiang, C.; Li, S.; Shen, W.; Pavlidis, Y.; Li, J. Message passing algorithm for the generalized assignment problem. In Proceedings of the International Conference on Network and Parallel Computing, Ilan, Taiwan, 18–20 September 2014; pp. 423–434. [Google Scholar]
- Wang, J.; Wang, L.; Wang, Y.; Zhang, D.; Kong, L. Task Allocation in Mobile Crowd Sensing: State-of-the-Art and Future Opportunities. IEEE Internet Things J. 2018, 5, 3747–3757. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zhu, W.; Yu, Z.; Wang, J.; Guo, B. A Survey of Task Allocation: Contrastive Perspectives From Wireless Sensor Networks and Mobile Crowdsensing. IEEE Access 2019, 7, 78406–78420. [Google Scholar] [CrossRef]
- Kuorilehto, M.; Hännikäinen, M.; Hämäläinen, T.D. A survey of application distribution in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2005, 2005, 859712. [Google Scholar] [CrossRef] [Green Version]
- Skaltsis, G.M.; Shin, H.S.; Tsourdos, A. A survey of task allocation techniques in MAS. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 488–497. [Google Scholar] [CrossRef]
- Jiang, Y. A Survey of Task Allocation and Load Balancing in Distributed Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 585–599. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Venayagamoorthy, G.K. Particle Swarm Optimization in Wireless-Sensor Networks: A Brief Survey. IEEE Trans. Syst. Man Cybern. Part C 2011, 41, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Weikert, D.; Steup, C.; Mostaghim, S. Multi-Objective Task Allocation for Dynamic IoT Networks. In Proceedings of the 2022 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 1–3 August 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Weikert, D.; Steup, C.; Mostaghim, S. Enhancing Resilience in IoT Networks Using Organic Computing. In Proceedings of the INFORMATIK 2020, Karlsruhe, Germany, 28 September–2 October 2021; pp. 1205–1214. [Google Scholar] [CrossRef]
- Weikert, D.; Steup, C.; Atienza, D.; Mostaghim, S. Mobility-Aware Multi-Objective Task Allocation for Wireless Sensor Networks. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Deb, K. Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–34. [Google Scholar]
- Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M.; Klawonn, F.; Moewes, C. Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Lewis, A.; Mostaghim, S.; Randall, M. Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications; Springer: Berlin/Heidelberg, Germany, 2009; Volume 210. [Google Scholar]
- Mostaghim, S.; Branke, J.; Schmeck, H. Multi-objective particle swarm optimization on computer grids. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, UK, 7–11 July 2007; pp. 869–875. [Google Scholar]
- Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, Cambridge, UK, 1989. [Google Scholar]
- Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Khalil, E.; Ozdemir, S.; Tosun, S. Evolutionary task allocation in Internet of Things-based application domains. Future Gener. Comput. Syst. 2018, 86, 121–133. [Google Scholar] [CrossRef]
- Khalil, E.A.; Ozdemir, S.; Attea, B.A. A New Task Allocation Protocol for Extending Stability and Operational Periods in Internet of Things. IEEE Internet Things J. 2019, 6, 7225–7231. [Google Scholar] [CrossRef]
- Tao, X.; Song, W. Location-Dependent Task Allocation for Mobile Crowdsensing with Clustering Effect. IEEE Internet Things J. 2019, 6, 1029–1045. [Google Scholar] [CrossRef]
- Sahni, Y.; Cao, J.; Zhang, S.; Yang, L. Edge Mesh: A New Paradigm to Enable Distributed Intelligence in Internet of Things. IEEE Access 2017, 5, 16441–16458. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Wang, B.; Gao, G.; Wang, S. Optimized Task Allocation for IoT Application in Mobile Edge Computing. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Weikert, D.; Steup, C.; Mostaghim, S. Multi-Objective Task Allocation for Wireless Sensor Networks. In Proceedings of the Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 181–188. [Google Scholar] [CrossRef]
- Weikert, D.; Steup, C.; Mostaghim, S. Availability-Aware Multiobjective Task Allocation Algorithm for Internet of Things Networks. IEEE Internet Things J. 2022, 9, 12945–12953. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Chen, G.; Niu, Y.; Chen, C. A PSO-Optimized Real-Time Fault-Tolerant Task Allocation Algorithm in Wireless Sensor Networks. Trans. Parallel Distrib. Syst. 2015, 26, 3236–3249. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Ling, Y.; Pan, C.; Sun, W. Task Allocation for Wireless Sensor Network Using Modified Binary Particle Swarm Optimization. IEEE Sens. J. 2014, 14, 882–892. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, S.; Guo, S.; Qiu, X.; Wang, Z. Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing. IEEE Access 2020, 8, 158488–158501. [Google Scholar] [CrossRef]
- Baniabdelghany, H.; Obermaisser, R.; Khalifeh, A. Reliable Task Allocation for Time-Triggered IoT-WSN using Discrete Particle Swarm Optimization. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Tao, L. Attack localization task allocation in wireless sensor networks based on multi-objective binary particle swarm optimization. J. Netw. Comput. Appl. 2018, 112, 29–40. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, C.; Zhu, X.; Xu, R. Reliable and Efficient Task Allocation Method in Wireless Sensor Networks. In Proceedings of the Genetic and Evolutionary Computing, Prague, Czech Republic, 13–17 July 2019; pp. 461–470. [Google Scholar]
- Olmsted, J.; Al-Masri, E. FogWeaver: Task Allocation Optimization Strategy across Hybrid Fog Environments. In Proceedings of the 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), Kaohsiung, Taiwan, 21–23 August 2020; pp. 156–159. [Google Scholar] [CrossRef]
- Niu, X.; Shao, S.; Xin, C.; Zhou, J.; Guo, S.; Chen, X.; Qi, F. Workload Allocation Mechanism for Minimum Service Delay in Edge Computing-Based Power Internet of Things. IEEE Access 2019, 7, 83771–83784. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Z.; Chen, S.; Abnoosian, K. An energy-aware method for task allocation in the Internet of things using a hybrid optimization algorithm. Concurr. Comput. Pract. Exp. 2021, 33, e5967. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, J. Elite Immune Ant Colony Optimization-Based Task Allocation for Maximizing Task Execution Efficiency in Agricultural Wireless Sensor Networks. J. Sens. 2020, 2020, 3231864. [Google Scholar] [CrossRef]
- Zannou, A.; Boulaaam, A.; Nfaoui, E.H. A Task Allocation In IoT Using Ant Colony Optimization. In Proceedings of the 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), Taza, Morocco, 26–27 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Yin, X.; Dai, W.; Li, B.; Chang, L.; Li, C. Cooperative task allocation in heterogeneous wireless sensor networks. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717735747. [Google Scholar] [CrossRef]
- Pedroso, C.; Uehara de Moraes, Y.; Nogueira, M.; Santos, A. Managing Consensus-Based Cooperative Task Allocation for IIoT Networks. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mudassar, M.; Zhai, Y.; Liao, L.; Shen, J. A Decentralized Latency-Aware Task Allocation and Group Formation Approach With Fault Tolerance for IoT Applications. IEEE Access 2020, 8, 49212–49223. [Google Scholar] [CrossRef]
- Edalat, N.; Tham, C.; Xiao, W. An auction-based strategy for distributed task allocation in wireless sensor networks. Comput. Commun. 2012, 35, 916–928. [Google Scholar] [CrossRef]
- Rahman, T.F.; Pilloni, V.; Atzori, L. Application Task Allocation in Cognitive IoT: A Reward-Driven Game Theoretical Approach. IEEE Trans. Wirel. Commun. 2019, 18, 5571–5583. [Google Scholar] [CrossRef]
- Joshi, N.; Srivastava, S. Task Allocation in Three Tier Fog IoT Architecture for Patient Monitoring System using Stackelberg Game and Matching Algorithm. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ding, S.; Lin, D. Dynamic Task Allocation for Cost-Efficient Edge Cloud Computing. In Proceedings of the 2020 IEEE International Conference on Services Computing (SCC), Beijing, China, 7–11 November 2020; pp. 218–225. [Google Scholar]
- Yao, J.; Ansari, N. Energy-Aware Task Allocation for Mobile IoT by Online Reinforcement Learning. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Yao, J.; Ansari, N. Task Allocation in Fog-Aided Mobile IoT by Lyapunov Online Reinforcement Learning. IEEE Trans. Green Commun. Netw. 2020, 4, 556–565. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, W.; Ji, S.; Jiang, H.; Yu, L.; Wu, D. Privacy-Preserving Online Task Allocation in Edge-Computing-Enabled Massive Crowdsensing. IEEE Internet Things J. 2019, 6, 7773–7787. [Google Scholar] [CrossRef]
- Ma, T.; Chen, X.; Ma, Z.; Chen, Y. Deep Reinforcement Learning for Pre-caching and Task Allocation in Internet of Vehicles. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2020; pp. 79–85. [Google Scholar] [CrossRef]
- Li, K.; Ni, W.; Yuan, X.; Noor, A.; Jamalipour, A. Deep-Graph-Based Reinforcement Learning for Joint Cruise Control and Task Offloading for Aerial Edge Internet of Things (EdgeIoT). IEEE Internet Things J. 2022, 9, 21676–21686. [Google Scholar] [CrossRef]
- Yu, W.; Huang, Y.; Garcia-Ortiz, A. Optimal Task Allocation Algorithms for Energy Constrained Multihop Wireless Networks. IEEE Sens. J. 2019, 19, 7744–7754. [Google Scholar] [CrossRef]
- Xiaoyu, X.; Huang, Z.; Lin, Z. Trajectory-Based Task Allocation for Crowd Sensing in Internet of Vehicles. In Proceedings of the 2018 International Conference on Robots Intelligent System (ICRIS), Amsterdam, The Netherlands, 21–23 February 2018; pp. 226–231. [Google Scholar] [CrossRef]
- Gai, K.; Qin, X.; Zhu, L. An Energy-Aware High Performance Task Allocation Strategy in Heterogeneous Fog Computing Environments. IEEE Trans. Comput. 2021, 70, 626–639. [Google Scholar] [CrossRef]
- Stypsanelli, I.; Brun, O.; Prabhu, B.J. Performance Evaluation of Some Adaptive Task Allocation Algorithms for Fog Networks. In Proceedings of the 2021 IEEE 5th International Conference on Fog and Edge Computing (ICFEC), Melbourne, Australia, 10–13 May 2021; pp. 84–88. [Google Scholar] [CrossRef]
- Alhaizaey, Y.; Singer, J.; Michala, A.L. Optimizing Task Allocation for Edge Micro-Clusters in Smart Cities. In Proceedings of the 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 7–11 June 2021; pp. 341–347. [Google Scholar] [CrossRef]
- Schwartz, A. A Reinforcement Learning Method for Maximizing Undiscounted Rewards. In Proceedings of the 10th International Conference on Machine Learning (ICML’93), Amherst, MA, USA, 27–29 June 1993; pp. 298–305. [Google Scholar] [CrossRef]
- Jiang, W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2021, 185, 40–54. [Google Scholar] [CrossRef]
- Weikert, D.; Steup, C.; Mostaghim, S. Surrogate models for IoT task allocation optimization. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022; pp. 364–366. [Google Scholar]
- Gong, Y.J.; Chen, W.N.; Zhan, Z.H.; Zhang, J.; Li, Y.; Zhang, Q.; Li, J.J. Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. Appl. Soft Comput. 2015, 34, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Zille, H. Large-Scale Multi-Objective Optimisation: New Approaches and a Classification of the State-of-the-Art. Ph.D. Thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2019. [Google Scholar]
- Riley, G.F.; Henderson, T.R. The ns-3 network simulator. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [Google Scholar]
- Varga, A. OMNeT++. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–59. [Google Scholar] [CrossRef]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 825–830. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Blank, J.; Deb, K. pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
Abbreviation | Attribute |
---|---|
Node position | |
Set of sensor/actuators of node | |
Node processing power | |
Node memory capacity | |
Node transmission latency | |
Node energy | |
Task processing requirement | |
Task memory requirements | |
Set of task constraints | |
Task spatial constraints | |
Task sensor/actuator requirements | |
Task communication cost |
Reference | Type | Failures | Mobility | MOO | Main Focus, Metrics |
---|---|---|---|---|---|
[19] | EA | o | − | − | Balance energy consumption, NL |
[20] | EA | o | − | − | NL |
[21] | EA | − | o | − | Measurement accuracy, E |
[22] | EA | − | − | − | E |
[23] | EA | o | − | o | A, L |
[24] | EA | − | − | o | NL, L |
[25] | EA | + | − | o | A, NL, L |
[11] | EA | − | + | o | A, NL, L |
[9] | EA | + | + | o | A, NL, L |
[26] | PSO | + | − | o | Redundancy, E, L, R |
[27] | PSO | − | − | o | NL, L, E |
[28] | PSO | − | − | − | PSO/EA hybrid, L |
[29] | PSO | − | − | o | L, E, R |
[30] | PSO | − | − | o | Balanced energy consumption, L, E |
[31] | PSO | − | − | − | E, R |
[32] | PSO | − | − | − | Non−specified metrics |
[33] | PSO | − | − | − | L |
[34] | PSO | − | − | − | Execution cost, L, E |
[35] | ACO | − | − | − | E |
[36] | ACO | − | − | − | E |
[37] | Consensus | − | − | − | task deadlines, E |
[38] | Consensus | − | − | − | Allocation generation time |
[39] | Consensus | + | − | − | Redundancy, R, A |
[40] | Auction | o | − | − | NL |
[41] | Auction | − | o | − | E |
[42] | Stackelberg game | − | − | o | L |
[43] | RL | − | − | − | Dynamic tasks, user cost |
[44] | RL | − | o | − | Dynamic tasks, L |
[45] | RL | − | − | − | Dynamic tasks, L |
[46] | RL | n/a | n/a | n/a | Privacy measure for TAP |
[47] | DL | − | + | − | Internet of Vehicles, data loss |
[48] | GNN | − | + | − | Task miss ratio |
[49] | LP, | − | − | − | NL |
[50] | LP | − | + | − | Size of observable Area |
[51] | Hill climbing | − | − | − | E, L |
[52] | Multiple | − | − | − | Multiple |
[53] | MIP | − | − | − | Allocation generation time, L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weikert, D.; Steup, C.; Mostaghim, S. Survey on Multi-Objective Task Allocation Algorithms for IoT Networks. Sensors 2023, 23, 142. https://doi.org/10.3390/s23010142
Weikert D, Steup C, Mostaghim S. Survey on Multi-Objective Task Allocation Algorithms for IoT Networks. Sensors. 2023; 23(1):142. https://doi.org/10.3390/s23010142
Chicago/Turabian StyleWeikert, Dominik, Christoph Steup, and Sanaz Mostaghim. 2023. "Survey on Multi-Objective Task Allocation Algorithms for IoT Networks" Sensors 23, no. 1: 142. https://doi.org/10.3390/s23010142
APA StyleWeikert, D., Steup, C., & Mostaghim, S. (2023). Survey on Multi-Objective Task Allocation Algorithms for IoT Networks. Sensors, 23(1), 142. https://doi.org/10.3390/s23010142