High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkar, M.; Bello, D.S.S.; van Hoof, C.; Theuwissen, A.J.P. Biologically Inspired CMOS Image Sensor for Fast Motion and Polarization Detection. IEEE Sens. J. 2013, 13, 1065–1073. [Google Scholar] [CrossRef]
- Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508. [Google Scholar] [CrossRef]
- Nagali, E.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 2009, 103, 013601. [Google Scholar] [CrossRef] [Green Version]
- Togan, E.; Chu, Y.; Trifonov, A.S.; Jiang, L.; Maze, J.; Childress, L.; Dutt, M.G.; Sørensen, A.S.; Hemmer, P.R.; Zibrov, A.S.; et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010, 466, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, Z.; Li, N.; Chen, X.; Chen, P.; Shen, X.; Lu, W. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep. 2014, 4, 6332. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Xu, X. Optical Chirality Detection Using a Topological Insulator Transistor. Adv. Opt. Mater. 2021, 9, 2002210. [Google Scholar] [CrossRef]
- Zhu, D.; Jiang, W.; Ma, Z.; Feng, J.; Zhan, X.; Lu, C.; Liu, J.; Liu, J.; Hu, Y.; Wang, D.; et al. Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. Nat. Commun. 2022, 13, 3454. [Google Scholar] [CrossRef]
- Edamatsu, K. Entangled Photons: Generation, Observation, and Characterization. Jpn. J. Appl. Phys. 2007, 46, 7175–7187. [Google Scholar] [CrossRef]
- Oohata, G.; Shimizu, R.; Edamatsu, K. Photon polarization entanglement induced by Biexciton: Experimental evidence for violation of Bell’s inequality. Phys. Rev. Lett. 2007, 98, 140503. [Google Scholar] [CrossRef] [Green Version]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, B.; Jiang, M.; Liu, D.; Liu, Z.; Li, B.; Liu, Z.; Lin, F.; Zhu, X.; Fang, Z. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2. Nanoscale 2020, 12, 5906–5913. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Kang, L.; Liu, W.; Yu, L.; Zheng, B.; Brongersma, M.L.; Werner, D.H.; Lan, S.; Shi, Y.; et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene-Silicon Photodetector. ACS Nano 2020, 14, 16634–16642. [Google Scholar] [CrossRef]
- Ma, C.; Yuan, S.; Cheung, P.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 2022, 604, 266–272. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, W.; Xu, L.; Hao, C.; Ma, W.; Sun, M.; Wu, X.; Qin, X.; Colombari, F.M.; de Moura, A.F.; et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat. Nanotechnol 2022, 17, 408–416. [Google Scholar] [CrossRef]
- Dai, M.; Wang, C.; Qiang, B.; Wang, F.; Ye, M.; Han, S.; Luo, Y.; Wang, Q.J. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 2022, 13, 2560. [Google Scholar] [CrossRef]
- Fang, C.; Li, J.; Zhou, B.; Li, D. Self-powered filterless on-chip full-stokes polarimeter. Nano Lett. 2021, 21, 6156–6162. [Google Scholar] [CrossRef]
- Cao, Y.; Li, C.; Deng, J.; Tong, T.; Qian, Y.; Zhan, G.; Zhang, X.; He, K.; Ma, H.; Zhang, J.; et al. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite. Nano Res. 2022, 15, 7492–7497. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, J.; Liu, C.; Guo, S.; Deng, J.; Cai, Q.; Li, Z.; Zhang, Y.; Zhang, W.; Chen, X. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors. J. Appl. Phys. 2019, 126, 074301. [Google Scholar] [CrossRef]
- Guo, S.; Deng, J.; Zhou, J.; Yu, Y.; Bu, Y.; Zhu, T.; Ren, X.; Li, Z.; Lu, W.; Chen, X. Combined role of polarization matching and critical coupling in enhanced absorption of 2D materials based on metamaterials. Opt. Express 2021, 29, 9269–9282. [Google Scholar] [CrossRef]
- Rubin, N.A.; D’Aversa, G.; Chevalier, P.; Shi, Z.; Chen, W.T.; Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 2019, 365, 43. [Google Scholar] [CrossRef]
- Zhao, Y.; Belkin, M.A.; Alu, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Wen, L.; Chen, Q.; Qiu, C.-W.; Li, B. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci. Adv. 2021, 7, eabh0365. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Rubin, N.A.; Zaidi, A.; Tamagnone, M.; Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics 2021, 15, 287–296. [Google Scholar] [CrossRef]
- Bai, J.; Wang, C.; Chen, X.; Basiri, A.; Wang, C.; Yao, Y. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photonics Res. 2019, 7, 1051–1060. [Google Scholar] [CrossRef]
- Ishii, A.; Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 2020, 6, eabd3274. [Google Scholar] [CrossRef]
- Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 2019, 10, 1927. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; da Costa, R.C.; Fuchter, M.J.; Campbell, A.J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 2013, 7, 634–638. [Google Scholar] [CrossRef]
- Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.J.; Oh, J.H.; Lin, J. pi-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 2021, 12, 142. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
- Gansel, J.K.; Latzel, M.; Frölich, A.; Kaschke, J.; Thiel, M.; Wegener, M. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 2012, 100, 101109. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.-W.; Liu, X.; Guo, H.; Lu, W. Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism. ACS Photonics 2016, 3, 2368–2374. [Google Scholar] [CrossRef]
- Esposito, M.; Tasco, V.; Cuscunà, M.; Todisco, F.; Benedetti, A.; Tarantini, I.; Giorgi, M.D.; Sanvitto, D.; Passaseo, A. Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics 2014, 2, 105–114. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, S.; Zhang, B.; Han, S.; Li, M.; Zhao, L.; Gao, L. Cellulose Nanocrystal/TiO2 Nanotube Composites for Circularly Polarized Light Detection. ACS Applied Nano Materials 2021, 5, 899–907. [Google Scholar] [CrossRef]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Kaschke, J.; Blume, L.; Wu, L.; Thiel, M.; Bade, K.; Yang, Z.; Wegener, M. A Helical Metamaterial for Broadband Circular Polarization Conversion. Advanced Optical Materials 2015, 3, 1411–1417. [Google Scholar] [CrossRef]
- Ji, C.Y.; Chen, S.; Han, Y.; Liu, X.; Liu, J.; Li, J.; Yao, Y. Artificial Propeller Chirality and Counterintuitive Reversal of Circular Dichroism in Twisted Meta-molecules. Nano Lett 2021, 21, 6828–6834. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Koshelev, K.; Zhang, F.; Yang, Y.; Wu, J.; Kivshar, Y.; Jia, B. Full-Stokes Polarization Perfect Absorption with Diatomic Metasurfaces. Nano Lett 2021, 21, 1090–1095. [Google Scholar] [CrossRef]
- Peng, J.; Cumming, B.P.; Gu, M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector. Opt. Lett. 2019, 44, 2998–3001. [Google Scholar] [CrossRef]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Zhou, J.; Dai, X.; Li, F.; Lan, M.; Ji, Z.; Lu, W.; Chen, X. Circular Polarization Discrimination Enhanced by Anisotropic Media. Adv. Opt. Mater. 2020, 8, 1901800. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, H.; Yao, K.; Cai, W.; Chen, H.; Liu, Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 2016, 3, 2096–2101. [Google Scholar] [CrossRef]
- Jing, L.; Wang, Z.; Yang, Y.; Zheng, B.; Liu, Y.; Chen, H. Chiral metamirrors for broadband spin-selective absorption. Appl. Phys. Lett. 2017, 110, 231103. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, J.; Shi, M.; Chu, Z.; Li, H.; Dong, R.; Chen, X. Cavity coupled plasmonic resonator enhanced infrared detectors. Appl. Phys. Lett. 2021, 119, 160504. [Google Scholar] [CrossRef]
- Zhen, T.; Zhou, J.; Li, Z.; Chen, X. Realization of Both High Absorption of Active Materials and Low Ohmic Loss in Plasmonic Cavities. Adv. Opt. Mater. 2019, 7, 1801627. [Google Scholar] [CrossRef]
- Deng, J.; Zheng, Y.; Zhou, J.; Li, Z.; Guo, S.; Dai, X.; Yu, Y.; Ji, Z.; Chu, Z.; Chen, X.; et al. Absorption enhancement in all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors. Opt. Express 2020, 28, 16427–16438. [Google Scholar] [CrossRef]
- Levine, B.F. Quantum-well infrared photodetectors. J. Appl. Phys. 1993, 74, R1–R81. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, J.; Zheng, Y.; Zhou, Y.; Hao, J.; Chen, X.; Lu, W. All-dielectric resonant waveguide based quantum well infrared photodetectors for hyperspectral detection. Opt. Commun. 2018, 427, 196–201. [Google Scholar] [CrossRef]
- Chu, Z.; Zhou, Y.; Zhou, J.; Chen, P.; Li, Z.; Lu, W.; Chen, X. Quantum well infrared detectors enhanced by faceted plasmonic cavities. Infrared. Phys. Technol. 2021, 116, 103746. [Google Scholar] [CrossRef]
- Dai, X.; Chu, Z.; Deng, J.; Li, F.; Zhou, J.; Xiong, D.; Zhou, X.; Chen, X.; Li, N.; Li, Z.; et al. Detection band expansion by independently tunable double resonances in a long-wavelength dual-color QWIP. Optics Express 2022, 30, 43579–43589. [Google Scholar] [CrossRef]
- Helm, M. Chapter 1 The Basic Physics of Intersubband Transitions. Semiconduct. Semimet. 1999, 62, 1–99. [Google Scholar]
- Lee, S.J.; Ku, Z.; Barve, A.; Montoya, J.; Jang, W.Y.; Brueck, S.R.; Sundaram, M.; Reisinger, A.; Krishna, S.; Noh, S.K. A monolithically integrated plasmonic infrared quantum dot camera. Nat. Commun. 2011, 2, 286. [Google Scholar] [CrossRef] [PubMed]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1998; Volume 3. [Google Scholar]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincare sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Zhu, T.; Zhou, J.; Chu, Z.; Ren, X.; Deng, J.; Dai, X.; Li, F.; Wang, B.; Chen, X.; et al. High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors. Sensors 2023, 23, 168. https://doi.org/10.3390/s23010168
Shen J, Zhu T, Zhou J, Chu Z, Ren X, Deng J, Dai X, Li F, Wang B, Chen X, et al. High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors. Sensors. 2023; 23(1):168. https://doi.org/10.3390/s23010168
Chicago/Turabian StyleShen, Jinyong, Tianyun Zhu, Jing Zhou, Zeshi Chu, Xiansong Ren, Jie Deng, Xu Dai, Fangzhe Li, Bo Wang, Xiaoshuang Chen, and et al. 2023. "High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors" Sensors 23, no. 1: 168. https://doi.org/10.3390/s23010168
APA StyleShen, J., Zhu, T., Zhou, J., Chu, Z., Ren, X., Deng, J., Dai, X., Li, F., Wang, B., Chen, X., & Lu, W. (2023). High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors. Sensors, 23(1), 168. https://doi.org/10.3390/s23010168