High-Performance Near-Infrared Photodetector Based on PbS Colloidal Quantum Dots/ZnO-Nanowires Hybrid Nanostructures
Abstract
:1. Introduction
2. Experiment
2.1. Chemical Reagents
2.2. Device Fabrication
2.3. Structural and Device Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tidrow, M.Z.; Dyer, W.R. Infrared sensors for ballistic missile defense. Infrared Phys. Technol. 2001, 42, 333–336. [Google Scholar] [CrossRef]
- Larush, L.; Magdassi, S. Formation of near-infrared fluorescent nanoparticles for medical imaging. Nanomedicine 2011, 6, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Kateb, B.; Yamamoto, V.; Yu, C.; Grundfest, W.; Gruen, J.P. Infrared thermal imaging: A review of the literature and case report. Neuroimage 2009, 47, T154–T162. [Google Scholar] [CrossRef]
- Murthy, J.N.; van Jaarsveld, J.; Fei, J.; Pavlidis, I.; Harrykissoon, R.; Lucke, J.F.; Faiz, S.; Castriotta, R.J. Thermal Infrared Imaging: A Novel Method to Monitor Airflow During Poly-somnography. Sleep 2009, 32, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Jones, B. A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans. Med. Imaging 1998, 17, 1019–1027. [Google Scholar] [CrossRef]
- Martin, P.A. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chem. Soc. Rev. 2002, 31, 201–210. [Google Scholar] [CrossRef]
- Watson, W.M.; Kohler, C.F. Continuous Environmental Monitoring of Nickel Carbonyl by Fourier Transform Infrared Spec-trometry and Plasma Chromatography. Environ. Sci. Technol. 1979, 13, 1241–1243. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Seward, A.; Ashraf, S.; Reeves, R.; Bromley, C. Improved environmental monitoring of surface geothermal features through com-parisons of thermal infrared, satellite remote sensing and terrestrial calorimetry. Geothermics 2018, 73, 60–73. [Google Scholar] [CrossRef]
- Marino, E.; Sciortino, A.; Berkhout, A.; Marino, E.; Sciortino, A.; Berkhout, A.; MacArthur, K.E.; Heggen, M.; Gregorkiewicz, T.; Kodger, T.E.; et al. Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals. ACS Nano 2020, 14, 13806−13815. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, J.; Johansson, E.M.; Zhang, X. PbS Colloidal Quantum Dot Inks for Infrared Solar Cells. Iscience 2020, 23, 101753. [Google Scholar] [CrossRef] [PubMed]
- Mamiyev, Z.; Balayeva, N. PbS nanostructures: A review of recent advances. Mater. Today Sustain. 2023, 21, 100305. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Egap, E. PET-RAFT polymerization catalyzed by cadmium selenide quantum dots (QDs): Grafting-from QDs pho-tocatalysts to make polymer nanocomposites. Polym. Chem. 2020, 11, 1018–1024. [Google Scholar] [CrossRef]
- McClelland, K.P.; Clemons, T.D.; Stupp, S.I.; Weiss, E.A. Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization. ACS Macro Lett. 2019, 9, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, K.; Yan, X.; Xiao, X.; Aruta, C.; Foglietti, V.; Ning, Z.; Yang, N. Amorphous ZnO/PbS Quantum Dots Heterojunction for Efficient Responsivity Broadband Photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 8403–8410. [Google Scholar] [CrossRef] [PubMed]
- Sliz, R.; Lejay, M.; Fan, J.Z.; Choi, M.-J.; Kinge, S.; Hoogland, S.; Fabritius, T.; de Arquer, F.P.G.; Sargent, E.H. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photo-detectors. ACS Nano 2019, 13, 11988–11995. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hao, W.; Du, Y.; Wang, C.; Wang, T. Growth mechanism for ZnO nanorod array in a metastable supersaturation solution. J. Nanosci. Nanotechnol. 2009, 9, 909–913. [Google Scholar] [CrossRef]
- Kim, B.J.; Park, S.; Kim, T.Y.; Jung, E.Y.; Hong, J.-A.; Kim, B.-S.; Jeon, W.; Park, Y.; Kang, S.J. Improving the photoresponsivity and reducing the persistent photocurrent effect of visi-ble-light ZnO/quantum-dot phototransistors via a TiO2 layer. J. Mater. Chem. C 2020, 8, 16384. [Google Scholar] [CrossRef]
- Shao, J.F.; Perera, A.G.U.; Jayaweera, P.V.V.; He, D. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensi-tized by PbS Quantum Dots. Chin. Phys. Lett. 2010, 27, 027302. [Google Scholar] [CrossRef] [Green Version]
- Kushnir, K.; Chen, K.F.; Zhou, L.T.; Giri, B.; Grimm, R.L.; Rao, P.M.; Titova, L.V. Dynamics of Photoexcited Carriers in Polycrystalline PbS and at PbS/ZnO Hetero-junctions: Influence of Grain Boundaries and Interfaces. J. Phys. Chem. C 2018, 122, 11682–11688. [Google Scholar] [CrossRef]
- Kumar, D.; Bai, R.; Chaudhary, S.; Pandya, D.K. Enhanced photoelectrochemical response for hydrogen generation in self-assembled aligned ZnO/PbS core/shell nanorod arrays grown by chemical bath deposition. Mater. Today Energy 2017, 6, 105–114. [Google Scholar] [CrossRef]
- Rekemeyer, P.; Chang, S.; Chuang, C.-H.M.; Hwang, G.W.; Bawendi, M.G.; Gradečak, S. Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering. Adv. Energy Mater. 2016, 6, 1600848. [Google Scholar] [CrossRef]
- Zhang, M.; Li, D.; Zhou, J.; Chen, W.; Ruan, S. Ultraviolet detector based on TiO2 nanowire array–polymer hybrids with low dark cur-rent. J. Alloys Compd. 2015, 618, 233–235. [Google Scholar] [CrossRef]
- Upadhyay, D.C.; Upadhyay, R.K.; Singh, A.P.; Jit, S. High-Performance Inverted Structure Broadband Photodetector Based on ZnO Nanorods/PCDTBT:PCBM:PbS QDs. IEEE Trans. Electron Devices 2020, 67, 4970–4976. [Google Scholar] [CrossRef]
- Deka, N.; Chakraborty, P.; Patra, D.C.; Dhar, S.; Mondal, S.P. Self-powered broadband photodetection using PbS decorated ZnO nano-rods/reduced graphene oxide junction. Mater. Sci. Semicond. Process. 2020, 118, 105165. [Google Scholar] [CrossRef]
- Lu, J.G.; Chang, P.; Fan, Z. Quasi-one-dimensional metal oxide materials-Synthesis, properties and application. Mater. Sci. Eng. R Rep. 2006, 52, 49–91. [Google Scholar] [CrossRef]
- Wang, Z.L. ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R Rep. 2009, 64, 33–71. [Google Scholar] [CrossRef]
- Gu, M.; Wang, Y.; Yang, F.; Lu, K.; Xue, Y.; Wu, T.; Fang, H.; Zhou, S.; Zhang, Y.; Ling, X.; et al. Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering. J. Mater. Chem. A 2019, 7, 15951–15959. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, S.; Wang, K.; Yang, X.; Lian, L.; Zhang, Z.; He, J.; Liang, G.; Wang, S.; Tan, M.; et al. Cation-Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells. Adv. Funct. Mater. 2019, 30, 1907379. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Qu, L.; Gao, C.; Wang, Y.; Teng, F.; Zhang, Z.; Pan, X.; Xie, E. Facile and fast one-pot synthesis of ultra-long porous ZnO nanowire arrays for efficient dye-sensitized solar cells. J. Alloys Compd. 2013, 586, 766–772. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, J.; Li, H.; Mao, P.; Wei, Y.; Zhong, X.; Hu, J.; Yang, S.; Wang, J. Bilayer PbS Quantum Dots for High-Performance Photodetectors. Adv. Mater. 2017, 29, 1702055. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Dong, D.; Yang, X.; Qiao, K.; Yang, D.; Deng, H.; Yuan, S.; Khan, J.; Lan, Y.; Song, H.; et al. Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2Toward High Performance and Broadband Phototransistors. Adv. Funct. Mater. 2016, 27, 1603605. [Google Scholar] [CrossRef]
- Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A.J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667. [Google Scholar] [CrossRef] [PubMed]
- Sulaman, M.; Yang, S.Y.; Song, T.J.; Wang, H.; Wang, Y.; He, B.; Dong, M.; Tang, Y.; Song, Y.; Zou, B. High performance solution-processed infrared photodiode based on ternary PbSx-Se1-x colloidal quantum dots. RSC Adv. 2016, 6, 87730–87737. [Google Scholar] [CrossRef]
- Manders, J.R.; Lai, T.-H.; An, Y.; Xu, W.; Lee, J.; Kim, D.Y.; Bosman, G.; So, F. Low-Noise Multispectral Photodetectors Made from All Solution-Processed Inorganic Semiconductors. Adv. Funct. Mater. 2014, 24, 7205–7210. [Google Scholar] [CrossRef]
- Xu, Q.; Meng, L.; Sinha, K.; Chowdhury, F.; Hu, J.; Wang, X. Ultrafast Colloidal Quantum Dot Infrared Photodiode. ACS Photon. 2020, 7, 1297–1303. [Google Scholar] [CrossRef]
Device | Illumination (nm) | Responsivity (A/W) | Detectivity (Jones) | Ref. |
---|---|---|---|---|
FTO/ZnO nanorods arrays/PCBM/ PbS CQDs/PCDTBT/MoOx/Ag | 860 | 7.22 | 5.82 × 1011 | [24] |
FTO/ZnO-nanorods/PbS/graphene oxide | 400 | 0.25 | 8.3 × 104 | [25] |
ITO/ZnO/PbS0.4Se0.6/Au | 980 | 25.8 | 1.3 × 1013 | [34] |
ITO/NiO/PbS/ZnO/Al | 1135 | / | 1.1 × 1012 | [35] |
ITO/ZnO/PbS-TBAI/PbS-EDT/Au | 1125 | / | 3.2 × 1011 | [36] |
ITO/ZnO NWs/PbS CQDs/Al | 940 | 3.9 × 104 | 9.4 × 1013 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, H.; Tang, L.; Tian, P.; Yu, L.; Zuo, W.; Teng, K.S. High-Performance Near-Infrared Photodetector Based on PbS Colloidal Quantum Dots/ZnO-Nanowires Hybrid Nanostructures. Sensors 2023, 23, 2254. https://doi.org/10.3390/s23042254
Zhong H, Tang L, Tian P, Yu L, Zuo W, Teng KS. High-Performance Near-Infrared Photodetector Based on PbS Colloidal Quantum Dots/ZnO-Nanowires Hybrid Nanostructures. Sensors. 2023; 23(4):2254. https://doi.org/10.3390/s23042254
Chicago/Turabian StyleZhong, Hefu, Libin Tang, Pin Tian, Lijing Yu, Wenbin Zuo, and Kar Seng Teng. 2023. "High-Performance Near-Infrared Photodetector Based on PbS Colloidal Quantum Dots/ZnO-Nanowires Hybrid Nanostructures" Sensors 23, no. 4: 2254. https://doi.org/10.3390/s23042254
APA StyleZhong, H., Tang, L., Tian, P., Yu, L., Zuo, W., & Teng, K. S. (2023). High-Performance Near-Infrared Photodetector Based on PbS Colloidal Quantum Dots/ZnO-Nanowires Hybrid Nanostructures. Sensors, 23(4), 2254. https://doi.org/10.3390/s23042254