Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO2F2 and Refrigerants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Setup
2.2. Simulations
3. Results and Discussion
3.1. Infrared Spectroscopic Characteristics of SO2F2 and Refrigerants
3.2. Simulation of the Sensitivity of the Photoacoustic Detectors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Derrick, M.R.; Burgess, H.D.; Baker, M.T.; Binnie, N.E. Sulfuryl fluoride (Vikane): A review of its use as a fumigant. J. Am. Inst. Conserv. 1990, 29, 77–90. [Google Scholar] [CrossRef]
- NIOSH Pocket Guide to Chemical Hazards. “#0581”; National Institute for Occupational Safety and Health (NIOSH): Washington, DC, USA, 2019.
- Veryser, C.; Demaerel, J.; Bieliūnas, V.; Gilles, P.; De Borggraeve, W.M. Ex situ generation of sulfuryl fluoride for the synthesis of aryl fluorosulfates. Org. Lett. 2017, 19, 5244–5247. [Google Scholar] [CrossRef] [PubMed]
- Gressent, A.; Rigby, M.; Ganesan, A.L.; Prinn, R.G.; Manning, A.J.; Mühle, J.; Salameh, P.K.; Krummel, P.B.; Fraser, P.J.; Steele, L.P.; et al. Growing atmospheric emissions of sulfuryl fluoride. J. Geophys. Res. Atmos. 2021, 126, e2020JD034327. [Google Scholar] [CrossRef]
- Papadimitriou, V.C.; Portmann, R.W.; Fahey, D.W.; Mühle, J.; Weiss, R.F.; Burkholder, J.B. Experimental and theoretical study of the atmospheric chemistry and global warming potential of SO2F2. J. Phys. Chem. A 2008, 112, 12657–12666. [Google Scholar] [CrossRef] [PubMed]
- Sulbaek Andersen, M.P.; Blake, D.R.; Rowland, F.S.; Hurley, M.D.; Wallington, T.J. Atmospheric chemistry of sulfuryl fluoride: Reaction with OH radicals, Cl atoms and O3, atmospheric lifetime, IR spectrum, and global warming potential. Environ. Sci. Technol. 2009, 43, 1067–1070. [Google Scholar] [CrossRef]
- Mühle, J.; Huang, J.; Weiss, R.F.; Prinn, R.G.; Miller, B.R.; Salameh, P.K.; Simmonds, P.G. Sulfuryl fluoride in the global atmosphere. J. Geophys. Res. Atmos. 2009, 114, D05306. [Google Scholar] [CrossRef] [Green Version]
- Roshni, V.; Harikumar, V.S. Fluoride contamination in wetlands of Kuttanad, India: Predisposing edaphic factors. Eurasian Soil Sci. 2021, 10, 61–68. [Google Scholar] [CrossRef]
- Qian, H.; Deng, J.; Xie, Z.; Pan, Z.; Zhang, J.; Zhou, H. Adsorption and gas sensing properties of the Pt3-MoSe2 monolayer to SOF2 and SO2F2. ACS Omega 2020, 5, 7722–7728. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, Q.; Zhang, Q.; Hong, C.; Xu, L.; Jin, L.; Chen, W. Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2. Sensors 2017, 17, 913. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Din, S.U.; ul Haq, M.; Tang, N.; Zhang, M.; Rahman, N.; Zhu, L. Room temperature monitoring of SF6 decomposition byproduct SO2F2 based on TiO2/NiSO4 composite nanofibers. Nanotechnology 2021, 32, 305705. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, Y.; Duan, S.; Tang, C.; Zhou, Q.; Xu, L.; Zhang, X. Ab initio study of SOF2 and SO2F2 adsorption on Co-MoS2. ACS Omega 2019, 4, 2517–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Gui, Y.; Xu, L.; Chen, X. Adsorption and sensing performances of transition metal (Ag, Pd, Pt, Rh, and Ru) modified WSe2 monolayer upon SF6 decomposition gases (SOF2 and SO2F2). Appl. Surf. Sci. 2022, 581, 152365. [Google Scholar] [CrossRef]
- Gui, X.; Zhou, Q.; Peng, S.; Xu, L.; Zeng, W. Adsorption behavior of Rh-doped MoS2 monolayer towards SO2, SOF2, SO2F2 based on DFT study. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 122, 114224. [Google Scholar] [CrossRef]
- Fá, A.G.; Faccio, R.; López-Corral, I. Detection of SOF2 and SO2F2 through aluminium nitride nanosheets: A DFT study. Appl. Surf. Sci. 2021, 538, 147899. [Google Scholar]
- Huang, H.; Yu, Y.; Zhang, M. Analysis of adsorption properties of SF6 decomposed gases (SOF2, SO2F2, SF4, CF4, and HF) on Fe-doped SWCNT: A DFT study. Appl. Surf. Sci. 2020, 505, 144622. [Google Scholar] [CrossRef]
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Bogue, R. Detecting gases with light: A review of optical gas sensor technologies. Sens. Rev. 2015, 35, 133–140. [Google Scholar] [CrossRef]
- Naik, R.C.; Shroff, R.D. NDIR based SO2F2 detector for fumigation monitoring. In Proceedings of the 9th International Conference on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Turkey, 15–19 October 2012; pp. 374–379. [Google Scholar]
- Yao, Q.; Yan, X.; He, S.; Qi, R.; Li, X.; Zeng, X.-Z.; Wang, X.; Zhang, S.; Zi, J.; Yue, Y. Detection of SO2F2 concentration of SF6 decomposition product in GIS gas chamber based on ICL-TDLAS. Adv. Sens. Syst. Appl. XI 2021, 11901, 179–188. [Google Scholar]
- Zhang, S.; Qiang, Y. Study on the suitable intermediate infrared spectrum optical detection applied to SO2F2 and SOF2. Int. Workshop Adv. Algorithms Control. Eng. 2022, 12350, 445–453. [Google Scholar]
- Bozóki, Z.; Pogany, A.; Szabo, G. Photoacoustic instruments for practical applications: Present, potentials, and future challenges. Appl. Spectrosc. Rev. 2011, 46, 1–37. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- West, G.A.; Barrett, J.J.; Siebert, D.R.; Reddy, K.V. Photoacoustic spectroscopy. Rev. Sci. Instrum. 1983, 54, 797–817. [Google Scholar] [CrossRef]
- Schilt, S.; Thévenaz, L.; Niklès, M.; Emmenegger, L.; Hüglin, C. Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.W. Trace gas monitoring by laser-photoacoustic spectroscopy. Infrared Phys. Technol. 1995, 36, 415–425. [Google Scholar] [CrossRef]
- Bian, C.; Dai, F.; Cheng, J.; Chen, X.; Gan, Q.; Zhang, Z.; Tan, T.; Yang, B.; Wang, C.; Cui, G.; et al. Detection of SF6 decomposition components SO2F2 and SOF2 based on mid-infrared laser photoacoustic spectroscopy. Int. Symp. High Volt. Eng. 2021, 1949–1953. [Google Scholar] [CrossRef]
- Minini, K.M.S.; Bueno, S.C.E.; da Silva, M.G.; Sthel, M.S.; Vargas, H.; Angster, J.; Miklós, A. Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing. Appl. Phys. B 2017, 123, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Yu, P.; Liu, Z. Optical Gas-Cell Dynamic Adsorption in a Photoacoustic Spectroscopy-Based SOF2 and SO2F2 Gas Sensor. Sensors 2022, 22, 7949. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Yu, P.; Liu, Z. Optical gas sensing of sub-ppm SO2F2 and SOF2 from SF6 decomposition based on photoacoustic spectroscopy. IET Optoelectron. 2022, 16, 277–282. [Google Scholar] [CrossRef]
- Huber, J.; Ambs, A.; Rademacher, S.; Wöllenstein, J. A selective, miniaturized, low-cost detection element for a photoacoustic CO2 sensor for room climate monitoring. Proc. Eng. 2014, 87, 1168–1171. [Google Scholar] [CrossRef]
- El-Safoury, M.; Weber, C.; Kiesewetter, O.; Hespos, Y.; Eberhardt, A.; Schmitt, K.; Wöllenstein, J. Miniaturized photoacoustic detection of organofluorine-based refrigerants. J. Sens. Sens. Sys. 2020, 9, 89–97. [Google Scholar] [CrossRef]
- Kuznetsova, T.I.; Lebedev, V.S. Transmission of visible and near-infrared radiation through a near-field silicon probe. Phys. Rev. B 2004, 70, 035107. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Demtröder, W. Experimentalphysik 2: Elektrizität und Optik; Springer: Berlin/Heidelberg, Germany, 2018; Volume 2. [Google Scholar]
- Baehr, H.D.; Stephan, K. Wärme-Und Stoffübertragung; Springer: Berlin, Germany, 1994; Volume 7. [Google Scholar]
Detector Type | LN-MCT Photoconductor |
---|---|
Resolution | 0.08 cm−1 |
Mirror velocity | 80 kHz |
Acquisition mode | Single-sided, forward–backward |
Phase correction method | Mertz |
Apodization function | Three-term Blackman–Harris window |
Substituent | Wavelength Range of Absorption Overlapping with SO2F2 (nm) |
---|---|
R227ea | 7700–8100 |
10,900–11,250 | |
11,400–11,800 | |
R134a [32] | 6550–6800 |
7700–8050 11,000–12,200 | |
R125 | 7700–8100 |
10,900–12,000 | |
Propene | 6500–6800 |
7700–7800 7900–8100 10,950–12,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yassine, H.; Weber, C.; Brugger, N.; Wöllenstein, J.; Schmitt, K. Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO2F2 and Refrigerants. Sensors 2023, 23, 180. https://doi.org/10.3390/s23010180
Yassine H, Weber C, Brugger N, Wöllenstein J, Schmitt K. Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO2F2 and Refrigerants. Sensors. 2023; 23(1):180. https://doi.org/10.3390/s23010180
Chicago/Turabian StyleYassine, Hassan, Christian Weber, Nicolas Brugger, Jürgen Wöllenstein, and Katrin Schmitt. 2023. "Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO2F2 and Refrigerants" Sensors 23, no. 1: 180. https://doi.org/10.3390/s23010180
APA StyleYassine, H., Weber, C., Brugger, N., Wöllenstein, J., & Schmitt, K. (2023). Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO2F2 and Refrigerants. Sensors, 23(1), 180. https://doi.org/10.3390/s23010180