Development of a Paper-Based Analytical Method for the Colorimetric Determination of Calcium in Saliva Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Apparatus
2.3. Fabrication of the Paper Devices
2.4. Experimental Process
2.5. Real Samples
2.6. Confirmative UV–Vis Method
3. Results and Discussion
3.1. Parameters Optimization
3.1.1. Effect of the Photo-Capture Detector
3.1.2. Effect of Na2SO3 Concentration
3.1.3. Effect of MTB Concentration
3.1.4. Effect of Sodium Hydroxide Concentration
3.1.5. Effect of the Reaction Time
3.1.6. Effect of the Detection Zone Size
3.1.7. Order of the Reagents
3.2. Analytical Characteristics of the Method
3.2.1. Linearity, Precision, and Limits of Detection (LOD) and Quantification (LOQ)
3.2.2. Selectivity
3.2.3. Stability of the Paper Devices
3.3. Application in Real Saliva Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, F.I.; Lima, L.; dos Santos, C.R. Salivary calcium and phosphate stability in different time and temperature storage. Braz. J. Pharm. Sci. 2016, 52, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-Z.; Cheng, X.-Q.; Li, J.-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.-D. Saliva in the diagnosis of diseases. Int. J. Oral Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Wang, X.; Chen, J. Saliva: Properties and functions in food oral processing. In Oral Processing and Consumer Perception: Biophysics, Food Microstructures and Health; The Royal Society of Chemistry: Cambridge, UK, 2022; pp. 1–24. [Google Scholar]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Prasanthi, B.; Kannan, N.; Patil, R.R. Effect of diuretics on salivary flow, composition, and oral health status: A clinico-biochemical study. Ann. Med. Health Sci. Res. 2014, 4, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Matkovic, V.; Heaney, R.P. Calcium balance during human growth: Evidence for threshold behavior. Am. J. Clin. Nutr. 1992, 55, 992–996. [Google Scholar] [CrossRef]
- Heaney, R.P. Nutritional factors in osteoporosis. Annu. Rev. Nutr. 1993, 13, 287–316. [Google Scholar] [CrossRef]
- Power, M.L.; Heaney, R.P.; Kalkwarf, H.J.; Pitkin, R.M.; Repke, J.T.; Tsang, R.C.; Schulkin, J. The role of calcium in health and disease. Am. J. Obstet. Gynecol. 1999, 181, 1560–1569. [Google Scholar] [CrossRef]
- Heaney, R.P.; Barger-Lux, M.J. Low calcium intake: The culprit in many chronic diseases. J. Dairy Sci. 1994, 77, 1155–1160. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T. Erosion-diagnosis and risk factors. Clin. Oral Investig. 2008, 12, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, M.N.; Tahiliani, D.; Shetty, S.; Devadiga, D. Salivary alkaline phosphatase, and calcium in caries-active type II diabetes mellitus patients: An in vivo study. Contemp. Clin. Dent. 2014, 5, 440–444. [Google Scholar] [CrossRef]
- Cunha-Cruz, J.; Scott, J.; Rothen, M.; Mancl, L.; Lawhorn, T.; Brossel, K.; Berg, K. Salivary characteristics, and dental caries: Evidence from general dental practices. J. Am. Dent. Assoc. 2013, 144, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Kwatra, K.S.; Kamboj, P. Evaluation of nonmicrobial salivary caries activity parameters and salivary biochemical indicators in predicting dental caries. J. Indian Soc. Pedod. Prev. Dent. 2012, 30, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.H.; Frank, H.A. Improved method for determination of calcium and magnesium of biologic fluids by EDTA titration. Am. J. Clin. Pathol. 1956, 26, 1157–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, B.B.; Kurtz, L.T. Calcium, and magnesium determinations by EDTA titrations. Soil Sci. Soc. Am. J. 1961, 25, 27–29. [Google Scholar] [CrossRef]
- Wallach, D.F.H.; Steck, T.L. Fluorescence techniques in microdetermination of metals in biological materials. II: An improved method for direct complexometric titration of calcium in small serum samples. Anal. Biochem. 1963, 6, 176–180. [Google Scholar] [CrossRef]
- Holtkamp, H.C.; Mantel, P.A.; Brouwer, H.J.; Liem, T.L.; Van Zwam, J.C.; Leijnse, B. A simple automated method for the fluorometric titration of calcium in biological fluids. Clin. Chim. Acta 1977, 76, 125–137. [Google Scholar] [CrossRef]
- Lau, O.W.; Cham, S.F. Spectrophotometric determination of calcium with chlorindazon C. Mikrochim. Acta 1980, 73, 465–474. [Google Scholar] [CrossRef]
- Giokas, D.L.; Paleologos, E.K.; Veltistas, P.G.; Karayannis, M.I. Micelle mediated extraction of magnesium from water samples with trizma-chloranilate and determination by flame atomic absorption spectrometry. Talanta 2002, 56, 415–424. [Google Scholar] [CrossRef]
- Shahida, S.; Rehman, S.; Ilyas, N.; Khan, M.I.; Hameed, U.; Hafeez, M.; Iqbal, S.; Elboughdiri, N.; Ghernaout, D.; Salih, A.A.; et al. Determination of blood calcium and lead concentrations in osteoporotic and osteopenic patients in Pakistan. ACS Omega 2021, 6, 28373–28378. [Google Scholar] [CrossRef]
- Fortunato, F.M.; Bechlina, M.A.; Gomes Neto, J.A.; Donati, G.L.; Jones, B.T. Internal standard addition calibration: Determination of calcium and magnesium by atomic absorption spectrometry. Microchem. J. 2015, 122, 63–69. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Lu, Q.; Wang, X.; Sun, D.; Wang, Y.; Yang, W. Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry. Talanta 2017, 175, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Amais, R.S.; Donati, G.L.; Zezzi Arruda, M.A. ICP-MS and trace element analysis as tools for better understanding medical conditions. Trends Anal. Chem. 2020, 133, 116094. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, Q.; Jia, Y.; Xu, J. Cluster, and factor analysis of elements in serum and urine of diabetic patients with peripheral neuropathy and healthy people. Biol. Trace Elem. Res. 2020, 194, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Zhao, Q.-Q.; Gao, Q.; Wu, S.-B.; Wang, G.; Chen, X.-P.; Wang, L.; Zhang, Y.-Y.; Tang, J. Diagnostic potential of ionomic profile in the plasma of cervical cancer patients receiving neoadjuvant chemoradiotherapy. J. Trace Elem. Med. Biol. 2020, 57, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Roverso, M.; Di Marco, V.; Badocco, D.; Pastore, P.; Calanducci, M.; Cosmi, E.; Visentin, S. Maternal, placental and cordonal metallomic profiles in gestational diabetes mellitus. Metallomics 2019, 11, 676–685. [Google Scholar] [CrossRef]
- Hua, Y.; Wei, Q.; Wu, G.; Sun, Z.-B.; Shang, Y.-J. Fluorescent determination of calcium ion using a coumarinyl pyrazoline scaffold and its application in living cells. Anal. Lett. 2020, 53, 960–972. [Google Scholar] [CrossRef]
- Narimani, L.; Lee, V.S.; Alias, Y.; Manan, N.S.; Woi, P.M. Rational design of a fluorescent chromophore as a calcium receptor via DFT and multivariate approaches. Molecules 2022, 27, 6248. [Google Scholar] [CrossRef]
- Thienpont, L.M.; Van Nuwenborg, J.E.; Stöckl, D. Ion chromatography as potential reference methodology for the determination of total calcium and magnesium in human serum. Anal. Chem. 1994, 66, 2404–2408. [Google Scholar] [CrossRef]
- Tsogas, G.Z.; Giokas, D.L.; Vlessidis, A.G. A fast assay of water hardness ions based on alkaline earth metal induced coacervation (HALC). Talanta 2010, 80, 2049–2056. [Google Scholar] [CrossRef]
- Boonyasit, Y.; Chinvongamorn, C.; Chailapakul, O.; Laiwattanapaisal, W. Simple spectrophotometric sequential injection analysis system for determination of serum calcium. Am. J. Anal. Chem. 2012, 3, 131–137. [Google Scholar] [CrossRef]
- Themelis, D.G.; Tzanavaras, P.D.; Trellopoulos, A.V.; Sofoniou, M.C. Direct and selective flow-injection method for the simultaneous spectrophotometric determination of calcium and magnesium in red and white wines using online dilution based on “Zone Sampling”. J. Agric. Food Chem. 2001, 49, 5152–5155. [Google Scholar] [CrossRef]
- Morin, L.G. Direct colorimetric determination of serum calcium with o-cresolphthalein complexon. Am. J. Clin. Pathol. 1974, 61, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.W.; Helbing, A.R. Arsenazo III: An improvement of the routine calcium determination in serum. Eur. J. Clin. Chem. Clin. Biochem. 1991, 29, 197–201. [Google Scholar] [PubMed]
- Bourguignon, C.; Dupuy, A.M.; Coste, T.; Michel, F.; Cristol, J.P. Evaluation of NM-BAPTA method for plasma total calcium measurement on Cobas 8000. Clin. Biochem. 2014, 47, 636–639. [Google Scholar] [PubMed]
- Themelis, D.G.; Tzanavaras, P.D.; Anthemidis, A.N.; Stratis, J.A. Direct, selective flow injection spectrophotometric determination of calcium in wines using methylthymol blue and an on-line cascade dilution system. Anal. Chim. Acta 1999, 402, 259–266. [Google Scholar] [CrossRef]
- Ripoll, J.P. Colorimetric determination of calcium in serum using methylthymol blue. Clin. Chim. Acta 1976, 72, 133–139. [Google Scholar] [CrossRef]
- Salazar, A.J.; Young, C.T. An automated methylthymol blue method for calcium determination in peanuts. J. Food Sci. 1984, 49, 209–211. [Google Scholar] [CrossRef]
- Rasouli, Z.; Irani, M.; Jafari, S.; Ghavami, R. Study of interaction of metal ions with methylthymol blue by chemometrics and quantum chemical calculations. Sci. Rep. 2021, 11, 6465–6483. [Google Scholar] [CrossRef]
- Pourreza, N.; Zavvar Mousavi, H. Solid phase preconcentration of iron as methylthymol blue complex on naphthalenetetraoctylammonium bromide adsorbent with subsequent flame atomic absorption determination. Talanta 2004, 64, 264–267. [Google Scholar] [CrossRef]
- Rasouli, Z.; Hassanzadeh, Z.; Ghavami, R. Application of a new version of GA-RBF neural network for simultaneous spectrophotometric determination of Zn(II), Fe(II), Co(II) and Cu(II) in real samples: An exploratory study of their complexation abilities toward MTB. Talanta 2016, 160, 86–98. [Google Scholar] [CrossRef]
- Bizirtsakis, P.A.; Tarara, M.; Tsiasioti, A.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a paper-based analytical method for the selective colorimetric determination of bismuth in water samples. Chemosensors 2022, 10, 265. [Google Scholar] [CrossRef]
- Ozer, T.; McMahon, C.; Henry, C.S. Advances in paper-based analytical devices. Annu. Rev. Anal. Chem. 2020, 13, 85–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beduk, T.; Beduk, D.; Hasan, M.R.; Celik, E.G.; Kosel, J.; Narang, J.; Salama, K.N.; Timur, S. Smartphone-based multiplexed biosensing tools for health monitoring. Biosensors 2022, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [Green Version]
- Kappi, F.A.; Tsogas, G.Z.; Routsi, A.M.; Christodouleas, D.C.; Giokas, D.L. Paper-based devices for biothiols sensing using the photochemical reduction of silver halides. Anal. Chim. Acta 2018, 1036, 89–96. [Google Scholar]
- Waller, A.W.; Toc, M.; Rigsby, D.J.; Gaytán-Martínez, M.; Andrade, J.E. Development of a paper-based sensor compatible with a mobile phone for the detection of common iron formulas used in fortified foods within resource-limited settings. Nutrients 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, V.; Cascione, M.; Fella, G.; Mazzotta, L.; Rinaldi, R. Colorimetric paper-based device for hazardous compounds detection in air and water: A proof of concept. Sensors 2020, 20, 5502. [Google Scholar] [CrossRef]
- Gosling, P. Analytical reviews in clinical biochemistry: Calcium measurement. Ann. Clin. Biochem. 1986, 23, 146–156. [Google Scholar] [CrossRef]
- Available online: https://www.anticorps-enligne.fr/kit/1000257/Calcium+Assay+Kit/ (accessed on 21 December 2022).
- Bremer, C.; Ruf, H.; Grell, E. Kinetics and mechanism of complex formation between Mg2+ and methylthymol blue. J. Phys. Chem. A 1998, 102, 146–152. [Google Scholar] [CrossRef]
- Aguiar, J.I.S.; Silva, M.T.S.; Ferreira, H.A.G.; Pinto, E.C.B.; Vasconcelos, M.W.; Rangel, A.O.S.S.; Mesquita, R.B.R. Development of a microfluidic paper-based analytical device for magnesium determination in saliva samples. Talanta Open 2022, 6, 100135. [Google Scholar] [CrossRef]
Ion Added | Concentration (mmol L−1) | Relative Error (%) |
---|---|---|
Na+ | 100 | −11.5 |
K+ | 100 | 1.8 |
Mg2+ | 5 mg L−1 | 2.2 |
Cl− | 100 | −7.0 |
HCO3− | 100 | −5.0 |
HPO42− | 100 | −2.3 |
Time (days) | |||
---|---|---|---|
2 | 4 | 6 | |
Temperature (°C) | Recovery % | ||
25 | 113.3 | 92.8 | 76.4 |
4 | 101.6 | 94.5 | 84.5 |
−18 | 112.2 | 108.6 | 114.4 |
Sample | Calcium Found (mg L−1) a | ||
---|---|---|---|
UV-Vis | Paper-Based Method | Relative Error (%) | |
1 | 57.64 | 62.12 | +7.8 |
2 | 54.39 | 61.01 | +12.2 |
3 | 73.63 | 84.15 | +14.3 |
4 | 44.11 | 42.98 | −2.6 |
5 | 32.18 | 30.71 | −4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarara, M.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a Paper-Based Analytical Method for the Colorimetric Determination of Calcium in Saliva Samples. Sensors 2023, 23, 198. https://doi.org/10.3390/s23010198
Tarara M, Tzanavaras PD, Tsogas GZ. Development of a Paper-Based Analytical Method for the Colorimetric Determination of Calcium in Saliva Samples. Sensors. 2023; 23(1):198. https://doi.org/10.3390/s23010198
Chicago/Turabian StyleTarara, Maria, Paraskevas D. Tzanavaras, and George Z. Tsogas. 2023. "Development of a Paper-Based Analytical Method for the Colorimetric Determination of Calcium in Saliva Samples" Sensors 23, no. 1: 198. https://doi.org/10.3390/s23010198
APA StyleTarara, M., Tzanavaras, P. D., & Tsogas, G. Z. (2023). Development of a Paper-Based Analytical Method for the Colorimetric Determination of Calcium in Saliva Samples. Sensors, 23(1), 198. https://doi.org/10.3390/s23010198