Squeeze Film Effect in Surface Micromachined Nano Ultrasonic Sensor for Different Diaphragm Displacement Profiles
Abstract
:1. Introduction
2. Analytical Model
2.1. Pressure Profile
2.2. Membrane Model
2.3. Plate Model
2.4. Non-Local Plate Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Qatatsheh, A.; Morsi, Y.; Zavabeti, A.; Zolfagharian, A.; Salim, N.; Kouzani, A.Z.; Mosadegh, B.; Gharaie, S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. Sensors 2020, 20, 4484. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.T.; Karam, H.N.; Mulligan, A.E.; Harvey, C.F.; Hammar, T.R.; Hemond, H.F. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries. Sensors 2009, 9, 404–429. [Google Scholar] [CrossRef] [PubMed]
- Takahata, K.; Gianchandani, Y.B. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application. Sensors 2008, 8, 2317–2330. [Google Scholar] [CrossRef] [PubMed]
- Ladabaum, I.; Jin, X.; Soh, H.T.; Atalar, A.; Khuri-Yakub, B. Surface micromachined capacitive ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998, 45, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Butaud, P.; Le Moal, P.; Bourbon, G.; Placet, V.; Ramasso, E.; Verdin, B.; Joseph, E. Towards a better understanding of the CMUTs potential for SHM applications. Sens. Actuators A Phys. 2020, 313, 112212. [Google Scholar] [CrossRef]
- Torndahl, M.; Almqvist, M.; Wallman, L.; Persson, H.W.; Lindstrom, K. Characterisation and Comparison of a cMUT versus a Piezoelectric Transducer for Air Applications. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 1023–1026. [Google Scholar]
- Mills, D.M. Medical Imaging with Capacitive Micromachined Ultrasound Transducer (cMUT) Arrays. In Proceedings of the 2004 IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; pp. 384–390. [Google Scholar]
- Caronti, A.; Caliano, G.; Carotenuto, R.; Savoia, A.; Pappalardo, M.; Cianci, E.; Foglietti, V. Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Microelectron. J. 2006, 37, 770–777. [Google Scholar] [CrossRef]
- N’Djin, W.A.; Gerold, B.; Vion-Bailly, J.; Canney, M.S.; Nguyen-Dinh, A.; Carpentier, A.; Chapelon, J.-Y. Capacitive micromachined ultrasound transducers for interstitial high-intensity ultrasound therapies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 1245–1260. [Google Scholar] [CrossRef]
- Ergun, A.S.; Yaralioglu, G.G.; Khuri-Yakub, B.T. Capacitive micromachined ultrasonic transducers: Theory and technology. J. Aerosp. Eng. 2003, 16, 76–84. [Google Scholar] [CrossRef]
- Khuri-Yakub, B.T.; Oralkan, Ö.; Kupnik, M. Next-gen ultrasound. IEEE Spectr. 2009, 46, 44–54. [Google Scholar] [CrossRef]
- Huang, Y.; Haeggstrom, E.; Zhuang, X.; Ergun, A.S.; Khuri-Yakub, B.T. Optimized membrane configuration improves CMUT performance. In Proceedings of the 2004 IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; pp. 505–508. [Google Scholar]
- Maity, R.; Maity, N.P.; Srinivasa Rao, K.; Guha, K.; Baishya, S. A new compact analytical model of nanoelectromechanical systems-based capacitive micromachined ultrasonic transducers for pulse echo imaging. J. Comput. Electron. 2018, 17, 1334–1342. [Google Scholar] [CrossRef]
- Maity, R.; Maity, N.; Guha, K.; Baishya, S. Analysis of spring softening effect on the collapse voltage of capacitive MEMS ultrasonic transducers. Microsyst. Technol. 2021, 27, 515–523. [Google Scholar] [CrossRef]
- Maity, R.; Maity, N.P.; Baishya, S. Circular membrane approximation model with the effect of the finiteness of the electrode’s diameter of MEMS capacitive micromachined ultrasonic transducers. Microsyst. Technol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Maadi, M.; Zemp, R.J. A nonlinear lumped equivalent circuit model for a single uncollapsed square CMUT cell. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Maity, N.; Maity, R. An improved displacement model for micro-electro-mechanical-system based ultrasonic transducer. Microsyst. Technol. 2019, 25, 4685–4692. [Google Scholar] [CrossRef]
- Saadatmand, M.; Kook, J. Differences between plate theory and lumped element model in electrostatic analysis of one-sided and two-sided CMUTs with circular microplates. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 468. [Google Scholar] [CrossRef]
- Zand, M.M.; Ahmadian, M. Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics. Int. J. Mech. 2007, 49, 1226–1237. [Google Scholar] [CrossRef]
- Zand, M.M.; Ahmadian, M. Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1664–1678. [Google Scholar] [CrossRef]
- Dastani, K.; Moghimi Zand, M. Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping. J. Comput. Appl. Mech. 2016, 47, 219–230. [Google Scholar]
- Hosseini, I.I.; Zand, M.M.; Lotfi, M. Dynamic pull-in and snap-through behavior in micro/nano mechanical memories considering squeeze film damping. Microsyst. Technol. 2017, 23, 1423–1432. [Google Scholar] [CrossRef]
- Abderezaei, J.; Moghimi Zand, M. Transient behavior of electrostatically-actuated micro systems considering squeeze film damping and mechanical shock. Sci. Iran. 2017, 24, 2887–2894. [Google Scholar] [CrossRef]
- Lotfi, M.; Moghimi Zand, M.; Isaac Hosseini, I.; Baghani, M.; Dargazany, R. Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams. Microsyst. Technol. 2017, 23, 6015–6023. [Google Scholar] [CrossRef]
- Roozbahani, M.M.; Moghimi Zand, M.; Mousavi Mashhadi, M.; Dehghan Banadaki, M.; Jafari Ghalekohneh, S.; Cao, C. Dynamic pull-in instability and snap-through buckling of initially curved microbeams under the effect of squeeze-film damping, mechanical shock and axial force. Smart Mater. Struct. 2019, 28, 097001. [Google Scholar] [CrossRef]
- Darling, R.B.; Hivick, C.; Xu, J. Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green’s function approach. Sens. Actuators A Phys. 1998, 70, 32–41. [Google Scholar] [CrossRef]
- Ahmad, B.; Pratap, R. Analytical evaluation of squeeze film forces in a CMUT with sealed air-filled cavity. IEEE Sens. J. 2011, 11, 2426–2431. [Google Scholar] [CrossRef]
- Apte, N.; Park, K.K.; Khuri-Yakub, B.T. Experimental evaluation of CMUTs with vented cavities under varying pressure. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 1724–1727. [Google Scholar]
- Younis, M.I.; Nayfeh, A.H. Simulation of squeeze-film damping of microplates actuated by large electrostatic load. J. Comput. Nonlinear Dyn. 2007, 2, 232–241. [Google Scholar] [CrossRef]
- Gan, Z.; Wang, C.; Chen, Z. Material structure and mechanical properties of silicon nitride and silicon oxynitride thin films deposited by plasma enhanced chemical vapor deposition. Surfaces 2018, 1, 59–72. [Google Scholar] [CrossRef]
- Kazinczi, R.; Mollinger, J.; Bossche, A. Reliability of Silicon Nitride as Structural Material in MEMS. In Proceedings of the Materials and Device Characterization in Micromachining II, Santa Clara, CA, USA, 20–21 September 1999; SPIE: Washington, DC, USA, 1999; Volume 3875. [Google Scholar]
- Pal, M. Modeling and Simulation of Silicon Carbide Based Microelectromechanical Ultrasonic Transducer; Mizoram University: Aizawl, India, 2021. [Google Scholar]
- Tiwari, S.K.; Satyanarayana, B.; Pai, A.G.; Trivedi, K.K. Circular capacitance micromachined ultrasonic transducer. Def. Sci. J. 2009, 59, 627. [Google Scholar] [CrossRef]
- Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959; Volume 2. [Google Scholar]
- Xu, X.; Liao, K. Molecular and continuum mechanics modeling of graphene deformation. Mater. Phys. Mech. 2001, 4, 148–151. [Google Scholar]
- Duan, W.; Wang, C.M. Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 2007, 18, 385704. [Google Scholar] [CrossRef]
- Landau, L.D.; Bell, J.S.; Kearsley, M.; Pitaevskii, L.; Lifshitz, E.; Sykes, J. Electrodynamics of Continuous Media; Elsevier: Amsterdam, The Netherlands, 2013; Volume 8. [Google Scholar]
- Morse, P.M.; Ingard, K.U. Theoretical Acoustics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Wang, C.; Tan, V.; Zhang, Y. Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 2006, 294, 1060–1072. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; He, X. Vibration of nonlocal Timoshenko beams. Nanotechnology 2007, 18, 105401. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Ramesh, S.S.; Kitipornchai, S. Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 2006, 39, 3904. [Google Scholar] [CrossRef]
- Wang, C.; Ru, C.; Mioduchowski, A. Axisymmetric and beamlike vibrations of multiwall carbon nanotubes. Phys. Rev. B 2005, 72, 075414. [Google Scholar] [CrossRef]
- Dastidar, A.G.; Tiwari, R.C.; Maity, R.; Maity, N. Displacement Profile of Micromachined Nano-Electro-Mechanical-Ultrasonic Pressure Sensor: A Comparative Analysis. In Proceedings of the 2021 IEEE 21th International Conference on Nanotechnology (NANO), Online, 28–30 July 2021; pp. 60–63. [Google Scholar]
- Badi, M.H.; Yaralioglu, G.G.; Ergun, A.S.; Degertekin, F.L.; Cheng, C.-H.; Khuri-Yakub, B. A first experimental verification of micromachined capacitive Lamb wave transducers. In Proceedings of the 2000 IEEE Ultrasonics Symposium, An International Symposium (Cat. No. 00CH37121). San Juan, PR, USA, 22–25 October 2000; pp. 311–314. [Google Scholar]
Region | Dimension in μm |
---|---|
The thickness of the substrate | 100 |
The thickness of the bottom electrode | 5 |
The thickness of the air cavity | 11.2 |
The thickness of the diaphragm | 0.5, 0.75, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 10.0, 15.0, 20.0 |
The radius of the diaphragm | 50, 100, 200, 300, 400, 500, 600, 700, 750, 800, 900 |
Material | Property Name | Value |
---|---|---|
Silicon Nitride | Relative permittivity | 9.7 |
Density | 3100 kg/m3 | |
Young’s modulus | 250 × 109 Pa | |
Poisson’s ratio | 0.23 | |
Thermal conductivity | 20 W/m·K | |
Coefficient of thermal expansion | 2.3 × 10−6 K−1 | |
Silicon | Coefficient of thermal expansion | 2.6 × 10−6 K−1 |
Heat capacity at constant pressure | 700 J/kg·K | |
Relative permittivity | 11.7 | |
Density | 2329 kg/m3 | |
Thermal conductivity | 130 W/m·K | |
Young’s modulus | 170 × 109 Pa | |
Poisson’s ratio | 0.28 | |
Air | Relative permittivity | 1.00 |
Region | Model | ||
---|---|---|---|
I | Membrane Model | ||
Plate Model | |||
Non-local Plate Model | |||
II | Membrane Model | ||
Plate Model | |||
Non-local Plate Model | |||
III | Membrane Model | ||
Plate Model | |||
Non-local Plate Model | |||
IV | Membrane Model | ||
Plate Model | |||
Non-local Plate Model | |||
All | Membrane Model | ||
Plate Model | |||
Non-local Plate Model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dastidar, A.G.; Maity, R.; Tiwari, R.C.; Vidojevic, D.; Kevkic, T.S.; Nikolic, V.; Das, S.; Maity, N.P. Squeeze Film Effect in Surface Micromachined Nano Ultrasonic Sensor for Different Diaphragm Displacement Profiles. Sensors 2023, 23, 4665. https://doi.org/10.3390/s23104665
Dastidar AG, Maity R, Tiwari RC, Vidojevic D, Kevkic TS, Nikolic V, Das S, Maity NP. Squeeze Film Effect in Surface Micromachined Nano Ultrasonic Sensor for Different Diaphragm Displacement Profiles. Sensors. 2023; 23(10):4665. https://doi.org/10.3390/s23104665
Chicago/Turabian StyleDastidar, Avik Ghosh, Reshmi Maity, Ramesh Chandra Tiwari, Dejan Vidojevic, Tijana S. Kevkic, Vojkan Nikolic, Subhajit Das, and Niladri Pratap Maity. 2023. "Squeeze Film Effect in Surface Micromachined Nano Ultrasonic Sensor for Different Diaphragm Displacement Profiles" Sensors 23, no. 10: 4665. https://doi.org/10.3390/s23104665
APA StyleDastidar, A. G., Maity, R., Tiwari, R. C., Vidojevic, D., Kevkic, T. S., Nikolic, V., Das, S., & Maity, N. P. (2023). Squeeze Film Effect in Surface Micromachined Nano Ultrasonic Sensor for Different Diaphragm Displacement Profiles. Sensors, 23(10), 4665. https://doi.org/10.3390/s23104665