Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Direct-Write Ultrasonic Transducer Design
2.2. Environmental Test
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basu, B.; Bursi, O.S.; Casciati, F.; Casciati, S.; Del Grosso, A.E.; Domaneschi, M.; Faravelli, L.; Holnicki-Szulc, J.; Irschik, H.; Krommer, M.; et al. A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe. Struct. Control Health Monit. 2014, 21, 1414–1436. [Google Scholar] [CrossRef]
- Bates, D.; Smith, G.; Lu, D.; Hewitt, J. Rapid thermal non-destructive testing of aircraft components. Compos. B Eng. 2000, 31, 175–185. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Zagrai, A.; Bao, J. Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 2002, 1, 41–61. [Google Scholar] [CrossRef]
- Yao, K.; Chen, S.; Lai, S.C.; Yousry, Y.M. Enabling distributed intelligence with ferroelectric multifunctionalities. Adv. Sci. 2022, 9, 2103842. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Kim, N.H. Cost-effectiveness of structural health monitoring in fuselage maintenance of the civil aviation industry. Aerospace 2018, 5, 87. [Google Scholar] [CrossRef]
- Wong, V.K.; Liu, M.; Goh, W.P.; Chen, S.; Zheng Wong, Z.; Cui, F.; Yao, K. Structural health monitoring of fastener hole using ring-design direct-write piezoelectric ultrasonic transducer. Struct. Health Monit. 2022, 21, 2657–2669. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, S.; Zhang, L.; Yao, K.; Tan, C.Y. Direct-write piezoelectric ultrasonic transducers for non-destructive testing of metal plates. IEEE Sens. J. 2017, 17, 3354–3361. [Google Scholar] [CrossRef]
- Wong, V.K.; Rabeek, S.M.; Lai, S.C.; Philibert, M.; Lim, D.B.K.; Chen, S.; Yao, K. Active Ultrasonic Structural Health Monitoring Enabled by Piezoelectric Direct-Write Transducers and Edge Computing Process. Sensors 2022, 22, 5724. [Google Scholar] [CrossRef]
- Guo, S.; Chen, S.; Zhang, L.L.; Chen, Y.F.; Yao, K. Plastic strain determination with nonlinear ultrasonic waves using in situ integrated piezoelectric ultrasonic transducers. J. Am. Ceram. Soc. 2018, 65, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Chen, S.; Zhang, L.; Liew, W.H.; Yao, K. Direct-write piezoelectric ultrasonic transducers for pipe structural health monitoring. NDT E Int. 2019, 107, 102131. [Google Scholar] [CrossRef]
- Yousry, Y.M.; Wong, V.K.; Ji, R.; Chen, Y.; Chen, S.; Zhang, X.; Yao, K. Shear Mode Ultrasonic Transducers from Flexible Piezoelectric PLLA Fibers for Structural Health Monitoring. Adv. Funct. Mater. 2023, 33, 2213582. [Google Scholar] [CrossRef]
- Philibert, M.; Chen, S.; Wong, V.K.; Liew, W.H.; Yao, K.; Soutis, C.; Gresil, M. Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates. Struct. Health Monit. 2022, 21, 1645–1660. [Google Scholar] [CrossRef]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, X.; Zhang, D.; Wu, Y. Development of novel ultrasonic transducers for microelectronics packaging. J. Mater. Process. Technol. 2009, 209, 1291–1301. [Google Scholar] [CrossRef]
- Chen, Z.; Song, X.; Lei, L.; Chen, X.; Fei, C.; Chiu, C.T.; Qian, X.; Ma, T.; Yang, Y.; Shung, K.; et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 2016, 27, 78–86. [Google Scholar] [CrossRef]
- Gao, D.; Wu, Z.; Yang, L.; Zheng, Y.; Yin, W. Structural health monitoring for long-term aircraft storage tanks under cryogenic temperature. Aerosp. Sci. Technol. 2019, 92, 881–891. [Google Scholar] [CrossRef]
- Attarian, V.; Cegla, F.; Cawley, P. Long term stability and expected performance of a guided wave SHM system. AIP Conf. Proc. 2013, 1511, 270–277. [Google Scholar]
- Mariello, M.; Guido, F.; Mastronardi, V.M.; Giannuzzi, R.; Algieri, L.; Qualteri, A.; Maffezzoli, A.; De Vittorio, M. Reliability of protective coatings for flexible piezoelectric transducers in aqueous environments. Micromachines 2019, 10, 739. [Google Scholar] [CrossRef]
- Botelho, G.; Silva, M.M.; Gonçalves, A.M.; Sencadas, V.; Serrado-Nunes, J.; Lanceros-Méndez, S. Performance of electroactive poly (vinylidene fluoride) against UV radiation. Polym. Test. 2008, 27, 818–822. [Google Scholar] [CrossRef]
- Dargaville, T.R.; Celina, M.; Martin, J.W.; Banks, B.A. Evaluation of piezoelectric PVDF polymers for use in space environments. II. Effects of atomic oxygen and vacuum UV exposure. J. Polym. Sci. B Polym. Phys. 2005, 43, 2503–2513. [Google Scholar] [CrossRef]
- Cegla, F.B. High temperature ultrasonic monitoring with permanently installed sensors. Proc. Natl. Semin. Exhib. Non-Destr. Eval. 2011, 360, e363. [Google Scholar]
- Michaels, J.E.; Michaels, T.E. Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1769–1782. [Google Scholar] [CrossRef] [PubMed]
- Tibaduiza, D.; Torres-Arredondo, M.Á.; Vitola, J.; Anaya, M.; Pozo, F. A damage classification approach for structural health monitoring using machine learning. Complexity 2018, 2018, 5081283. [Google Scholar] [CrossRef]
- Department of Defense Test Method Standard—Environmental Engineering Considerations and Laboratory Tests (MIL-STD-810H). Available online: https://info.endaq.com/hubfs/MIL-STD-810H.pdf (accessed on 16 April 2023).
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Kim, J.K.; Yu, T.X. Forming and failure behaviour of coated, laminated and sandwiched sheet metals: A review. J. Mater. Process. Technol. 1997, 63, 33–42. [Google Scholar] [CrossRef]
- Yao, K.; Tay, F.E.H. Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 113–116. [Google Scholar]
- Zhu, X.; Rizzo, P. Guided waves for the health monitoring of sign support structures under varying environmental conditions. Struct. Control Health Monit. 2013, 20, 156–172. [Google Scholar] [CrossRef]
- Koner, S.; Deshmukh, P.; Ahlawat, A.; Karnal, A.K.; Satapathy, S. Studies on structural, dielectric, impedance spectroscopy and magneto-dielectric properties of La0. 7Ba0. 3MnO3/P (VDF-TrFE) multiferroic (0–3) nanocomposite films. J. Alloys Compd. 2021, 868, 159104. [Google Scholar] [CrossRef]
- Fan, C.; Liu, Y.; Yin, X.; Shi, J.; Dilger, K. Electrochemical Behavior and Interfacial Delamination of a Polymer-Coated Galvanized Steel System in Acid Media. ACS Omega 2021, 6, 20331–20340. [Google Scholar] [CrossRef] [PubMed]
- Badapanda, T.; Harichandan, R.K.; Nayak, S.S.; Mishra, A.; Anwar, S. Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 Aurivillius ceramic. Process. Appl. Ceram. 2014, 8, 145–153. [Google Scholar] [CrossRef]
- Liang, C.; Sun, F.; Rogers, C.A. Electro-mechanical impedance modeling of active material systems. Smart Mater. Struct. 1996, 5, 171–186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.K.; Wong, V.-K.; Lim, D.B.K.; Christopher Subhodayam, P.T.; Luo, P.; Yao, K. Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating. Sensors 2023, 23, 4696. https://doi.org/10.3390/s23104696
Han JK, Wong V-K, Lim DBK, Christopher Subhodayam PT, Luo P, Yao K. Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating. Sensors. 2023; 23(10):4696. https://doi.org/10.3390/s23104696
Chicago/Turabian StyleHan, Jin Kyu, Voon-Kean Wong, David Boon Kiang Lim, Percis Teena Christopher Subhodayam, Ping Luo, and Kui Yao. 2023. "Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating" Sensors 23, no. 10: 4696. https://doi.org/10.3390/s23104696
APA StyleHan, J. K., Wong, V. -K., Lim, D. B. K., Christopher Subhodayam, P. T., Luo, P., & Yao, K. (2023). Environmental Robustness and Resilience of Direct-Write Ultrasonic Transducers Made from P(VDF-TrFE) Piezoelectric Coating. Sensors, 23(10), 4696. https://doi.org/10.3390/s23104696