Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria del Fiore
Abstract
:1. Introduction
«In a process involving multiple actors, difficulties in communication represent the first obstacle to making the different phases coherent, coordinated and planned. Among the potential advantages of digitization, the facilitation of information management throughout the entire process is perhaps the least obvious and yet the most decisive.»[8]
2. Background
2.1. Preventive and Planned Conservation
“a medium-long term strategy for the effective management of cultural heritage. Based on the integration of conservation and enhancement activities. It is oriented towards prevention and the constant care of cultural heritage. It is an articulated process which produces new knowledge and stratification of information, and requires tools for data management and planning.”[33]
2.2. The Issue of Information Management
2.3. HBIM as a Possible Solution
- Documentation/knowledge—the HBIM facilitates the collection of heterogeneous information, such as data concerning construction and maintenance history, as well as the geometric, functional, structural and material characteristics of the building and its individual elements.
- Ease of management—the model will support conservation activities by facilitating the planning of interventions. The information system will be constantly fed new data generated by periodic inspections, gradually increasing its forecasting potential.
- Sharing—the tool will foster cooperation among the professionals involved, ensuring clearer communication and greater consistency between the results. The same model can in fact be used to carry out analyses of different kinds.
- Enhancement—the model could be easily implemented using virtual or augmented reality technologies, with possible interesting implications in terms of dissemination.
3. Materials and Methods
- Historical analysis of the wooden chain: the construction history of the wooden chain has been retraced thanks to a thorough study of archival sources and literature, to visual inspections and to an accurate geometric survey. This phase generated lots of data which needed to be catalogued and made accessible in order to foster and improve conservation procedures.
- 3D model of the dome: starting from 2D drawings obtained from two different surveys of the dome, a simplified 3D model of the dome and wooden chain was developed. The model aims to represent the building in its original, undeformed situation. To this end, the simplification of the model has also entailed the study of the original proportions of the dome.
- Organization of data: in the last phase data collected throughout the research have been organized into property groups to be associated to the 3D model in BIM environment. As explained in the following paragraphs, data have been organized in order to provide the most possible benefits to the professionals in charge of the preservation of the wooden chain.
3.1. Historical Analysis of the Wooden Chain
3.2. 3D Model of the Dome
The Codification System
3.3. Organization of Data
- to offer the technical office of the Opera di Santa Maria del Fiore an intuitive and easy-to-use tool to support conservation activities;
- to develop an effective cataloging system for the archiving and retrieval of information;
- to foster collaboration between the professionals involved in the management of the Opera’s assets;
- to guarantee the usability of the information tool on a large scale (possibly also for dissemination purposes).
4. Results
4.1. Identity Data
4.2. Geometric Data
4.3. Geometric Survey
4.4. Mechanical Properties
- any instrumental or laboratory tests;
- the UNI 11119:2004 standard [71]—which offers indications of the procedures used to perform the on-site assessment of the strength and stiffness of timber elements, with specific reference to the field of cultural heritage;
- the UNI 11035:2010 standard [74]—which, in Part 2, provides the typical mechanical properties of the main Italian wood species.
4.5. Classification by Resistance
4.6. Instrumental Analyses
4.7. Connections
- presence/absence—an option group that indicates whether any joints can be seen on the wooden element.
- typology—a brief description of the joints is provided. While a text string was arranged for wooden joints, for metal joints it was decided that a preset option group would be used; this includes the six typologies that currently exist on the wooden chain. An additional field is created for metal joints, in order to provide access, via a hypertext link, to a more detailed description of the specific joint typology.
- quantity—the number of joints of each category (wood and metal) will be provided. Where no joints are found, a 0 value will be indicated.
4.8. State of Repair
- biotic degradation—form of degradation caused by biological agents (fungi and insects);
- abiotic degradation—form of degradation caused by both chemical and physical agents;
- mechanical damage—mechanical failure caused by internal or external mechanical actions.
4.9. Conservation Activities
4.10. Criticalities
4.11. Accessibility
- accessibility—this indicates whether the analyzed object is accessible or not. Some possible options have been preset through an option group: inaccessible, direct, with scaffolding, with ladder and other;
- visibility—an option group has also been arranged for this field. It will thus be possible to choose among the following: total, partial, null. While the UNI 11119:2004 [71] uses the term “cleanliness”, in this context it was decided that the term “visibility” would be used instead. This was carried out to also include the visibility conditions that are caused by the object’ position. In fact, if the beam—although perfectly clean—should have a surface that adheres to a wall, its overall visibility would only be partial.
- lighting—a multiple selection option group has been set up to describe lighting conditions. It will be possible to alternatively choose one of the following items: absent, natural, artificial. If any light source is present, it will be possible to specify whether it is sufficient or insufficient. The operator will thus be aware of the need to provide lighting when performing conservation activities.
4.12. Historical Documents
4.13. Other
4.14. Priority Index
- for sub-categories, the score must be entered manually by selecting one of the preset values included in the option group. The operator in charge will therefore be able to easily choose a value between 0 and 5 from a drop-down menu. For the sake of clarity, a brief on the method of compilation will be offered within the description of the property.
- For macro-categories, by using the “expression” function, it is possible to automatize the calculation. The software will thus automatically calculate the average between the scores attributed to the sub-categories.
- For the priority index, the value of the priority index will also be calculated automatically by the program. The “expression” function will operate the overall sum of the scores related to the historical–architectural value, the damage conditions and the risk conditions.
5. Discussion
- Data usability: the fact that information is collected and organized within a single model will facilitate the knowledge process, which is at the basis of conservation: the greater the availability of data, the better the planning of inspection and maintenance activities, both in terms of the timing and methods to be used.
- Intervention priorities: the priority indexes, highlighting the most critical issues, can be easily translated into a list of interventions to be carried out. The scheduling will reflect the urgency expressed by the index, resulting in farsighted planning and in the optimization of available resources, which will be firstly allocated to non-derogable activities.
- Pocket archive: the possibility of consulting the model in situ, via portable devices, will allow professionals in charge of conservation activities to consult the available data and use them to carry out better targeted and more exhaustive analyses.
6. Conclusions
“[…] today it is no longer possible to speak of restoration if not identifying it with the primary requirement of conservation, i.e., if it is not intended erga omnes as the exclusive cultural and technical commitment to ensure above all the persistence and effective permanence of the asset. The mutable series of notions of “value” that every historical moment and every subject cannot fail to express with regard to built heritage, today can only serve to define a degree or a scale of priorities to be attributed to the conservation intervention […].”[87]
“The conservation of the cultural heritage is ensured by means of a consistent, coordinated and programmed activity of study, prevention, maintenance and restoration.”[88]
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Fusco, R. Il restauro architettonico: Ricchi apparati e povere idee. Op. Cit. 1980, 49, 5–16. [Google Scholar]
- Grimoldi, A. Le sauvegarde et la conservation du patrimoine: Une pratique multidisciplinaire. Redéfinition des compétences et renouvellement des parcours de formation. In The Teaching of Architectural Conservation in Europe; Di Biase, C., Albani, F., Eds.; Maggioli Editore: Rimini, Italy, 2019; pp. 135–147. [Google Scholar]
- Previtali, M.; Brumana, R.; Stanga, C.; Banfi, F. An Ontology-Based Representation of Vaulted System for HBIM. Appl. Sci. 2020, 10, 1377. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, M.; Bughio, M.; Talpur, B.D.; Kim, I.S.; Seo, J. An integrated HBIM Framework for the Management of Heritage Buildings. Buildings 2022, 12, 964. [Google Scholar] [CrossRef]
- Fiorani, D.; Acierno, M. Conservation Process Model (CPM): A Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5, 283–290. [Google Scholar] [CrossRef]
- Della Torre, S. La Conservazione Programmata: Una Strategia per Il Patrimonio Storico-Architettonico. In La Conservazione Programmata del Patrimonio Storico Architettonico. Linee Guida per Il Piano di Manutenzione e Bilancio Scientifico; Della Torre, S., Ed.; Guerini e Associati: Milan, Italy, 2003; pp. 17–24. [Google Scholar]
- Della Torre, S. Oltre il restauro, oltre la manutenzione. In La Strategia della Conservazione Programmata; Della Torre, S., Borgarino, M.P., Eds.; Nardini: Florence, Italy, 2014; Volume 1, p. 7. [Google Scholar]
- Benatti, E.; Borgarino, M.P.; Della Torre, S. Planet Beni Architettonici. Uno strumento per la conservazione programmata del patrimonio storico-architettonico. In I.C.T. per Il Miglioramento del Processo Conservativo; Della Torre, S., Ed.; Nardini Editore: Florence, Italy, 2014; pp. 13–30. [Google Scholar]
- Adami, A.; Bruno, N.; Rosignoli, O.; Scala, B. HBIM for Planned Conservation: A New Approach to Information Management. In Proceedings of the 23rd International Conference on Cultural Heritage and New Technologies, Vienna, Austria, 12–15 November 2018. [Google Scholar]
- Castagnetti, C.; Dubbini, M.; Ricci, P.C.; Rivola, R.; Giannini, M.; Capra, A. Critical issues and key points from the survey to the creation of the historical building information model: The case of Santo Stefano Basilica. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 467–474. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From point cloud to BIM: A modelling challenge in the cultural heritage field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 429–436. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Oreni, D.; Previtali, M.; Roncoroni, F. HBIM and augmented information: Towards a wider user community of image and range-based reconstructions. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2015, 40, 35–42. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Remondino, F. Accuracy of typical photogrammetric networks in Cultural Heritage 3D modeling projects. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2014, XL, 465–472. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. A restoration oriented HBIM system for cultural heritage documentation: The case study of Parma Cathedral. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 171–178. [Google Scholar] [CrossRef]
- Quattrini, R.; Pierdicca, R.; Morbidoni, C.; Maliverni, E.S. Conservation-oriented HBIM. The bimexplorer web tool. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 275–281. [Google Scholar] [CrossRef]
- Rechichi, F.; Fassi, F.; Mandelli, A.; Achille, C. A system for sharing high-resolution models and information on web: The analysis of the web module of bim3dsg system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 703–710. [Google Scholar] [CrossRef]
- Fai, S.; Graham, K.; Duckworth, T.; Wood, N.; Attar, R. Building Information Modelling and heritage documentation. In Proceedings of the XXIII International CIPA Symposium, Prague, Czech Republic, 12–16 September 2011; pp. 1–8. [Google Scholar]
- Bruno, N. From Survey to Analysis for Cultural Heritage Management: A New Proposal for Database Design in BIM. Ph.D. Thesis, Università degli studi di Parma, Parma, Italy, 2018. [Google Scholar]
- Aburamadan, R.; Moustaka, A.; Trillo, C.; Makore, B.C.N.; Udeaja, C.; Baffour, K.G. Heritage Building Information Modelling (HBIM) as a Tool for Heritage Conservation: Observations and Reflections on Data Collection, Management and Use. In Research in a Middle East Context, in Culture and Computing. Interactive Cultural Heritage and Arts; Rauterberg, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 3–14. [Google Scholar]
- Trillo, C.; Aburamadan, R.; Udeaja, C.; Moustaka, A.; Baffour, K.G.; Makore, B.C.N. Enhancing Heritage and Traditional Architecture Conservation Through Digital Technologies. Developing a Digital Conservation Handbook for As-Salt, Jordan. In New Metropolitan Perspectives; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 211–219. [Google Scholar]
- Saalman, H. Filippo Brunelleschi. The Cupola of Santa Maria del Fiore; A. Zwemmer Ltd.: Londra, UK, 1980; p. 73. [Google Scholar]
- Ottoni, F.; Blasi, C. Hooping as an Ancient Remedy for Conservation of Large Masonry Domes. Int. J. Archit. Herit. 2016, 10, 164–181. [Google Scholar] [CrossRef]
- Ottoni, F. Delle Cupole e del Loro Tranello; Aracne: Rome, Italy, 2012. [Google Scholar]
- Fanelli, G.; Fanelli, M. La Cupola del Brunelleschi. Storia e Futuro di una Grande Struttura; Mandragora: Florence, Italy, 2004. [Google Scholar]
- Sgrilli, B.S. Descrizione e Studi Dell’insigne Fabbrica di S. Maria del Fiore Metropolitana Fiorentina; Per Bernardo Paperini: Florence, Italy, 1733; tav. VII. [Google Scholar]
- Negri, M.; Bernabei, M.; Fellin, M.; Bontadi, J. Relazione Preliminare Sullo Stato di Conservazione e Tensionale di Alcuni Elementi Lignei Della Cupola di Santa Maria del Fiore; Relazione Interna dell’Opera di Santa Maria del Fiore; CNR-IVALSA Laboratorio Qualità del Legno e Laboratorio di Dendrocronologia: Florence, Italy, 2014; unpublished work. [Google Scholar]
- Brandi, C. Teoria del Restauro; Einaudi: Turin, Italy, 1977. [Google Scholar]
- Zanardi, A. Il Restauro. In Giovanni Urbani and Cesare Brandi, Due Teorie a Confront; Skira Editore: Milan, Italy, 2009. [Google Scholar]
- Ruskin, J. Le Sette Lampade Dell’architettura; Jaca Book: Milan, Italy, 2007. [Google Scholar]
- Moioli, R.; Boniotti, C.; Konsta, A.; Pili, A. Complex properties management: Preventive and planned conservation applied to the Royal Villa and Park in Monza. J. Cult. Herit. Manag. Sustain. Dev. 2018, 8, 130–144. [Google Scholar] [CrossRef]
- Respecting the Vision. Sydney Opera House—A Conservation Management Plan. Available online: https://www.sydneyoperahouse.com/content/dam/pdfs/conservation-management-plan/soh-cmp-interactive-1.pdf (accessed on 20 March 2023).
- Moioli, R.; Baldioli, A. (Eds.) Conoscere per Conservare. 10 anni per la Conservazione Programmata. In Fondazione Cariplo Quaderni dell’Osservatorio; Il Giornale dell’Arte: Turin, Italy, 2018; Volume 29, p. 7. [Google Scholar]
- Torre, D. Piano di manutenzione e Consuntivo scientifico nella legislazione sui lavori pubblici. In La Conservazione Programmata del Patrimonio Storico Architettonico; Della Torre, S., Ed.; Guerini e Associati: Milan, Italy, 2003. [Google Scholar]
- Ottoni, F. Per una ‘quantificazione’ del monitoraggio strutturale, strumento di programmazione e tutela. In Restauro: Conoscenza, Progetto, Cantiere, Gestione; Musso, S.F., Pretelli, M., Eds.; Edizioni Quasar: Rome, Italy, 2020; pp. 783–789. [Google Scholar]
- Sotgia, C. Il piano di conservazione: Indicazioni di metodo per le attività di controllo. In La Conservazione Programmata Del Patrimonio Storico Architettonico. Linee Guida per Il Piano di Manutenzione e Consuntivo Scientifico; Della Torre, S., Ed.; Guerrini e Associati: Milan, Italy, 2003; pp. 89–105. [Google Scholar]
- Acierno, M. Processi di studio per il restauro e metodi digitali. In RICerca REStauro; Fiorani, D., Ed.; Edizioni Quasar: Rome, Italy, 2017; Volume 4, p. 841. [Google Scholar]
- Acierno, M.; Fiorani, D. CPM: Un’ontologia per il restauro. In ANANKE; Altralinea: Florence, Italy, 2017; pp. 147–152. [Google Scholar]
- Schmidt, H. Building research from past to present. The development of methods in Germany since the 19th century. In Preparatory Architectural Investigation in the Restoration of Historical Buildings; De Jonge, K., Van Balen, K., Eds.; Leuven University Press: Leuven, Belgium, 2002; pp. 15–29. [Google Scholar]
- Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication; White Paper; Florida Institute of Technology: Melbourne, Australia, 2014. [Google Scholar]
- Tucci, G. Nuove sinergie tra geomatica e restauro. In ANANKE; Altralinea: Florence, Italy, 2017; p. 9. [Google Scholar]
- Cecchi, R.; Gasparoli, P. Prevenzione e Manutenzione Per i Beni Culturali Edificati. Procedimenti Scientifici Per lo Sviluppo Delle Attività Ispettive; Alinea Editrice: Florence, Italy, 2010; p. 21. [Google Scholar]
- Achille, C.; Fassi, F. Duomo di Milano. Rilievo, modellazione e gestione BIM dei cantieri. In BIM. Complete Guide to Building Information Modeling; Di Giuda, G.M., Villa, V., Eds.; Hoepli: Milan, Italy, 2016; p. 633. [Google Scholar]
- Ottoni, F.; Zerbi, A.; Freddi, F. Dalla realtà al modello, e ritorno. Riflessioni sul rilievo e astrazione per la conservazione del patrimonio culturale. In ANANKE; Altralinea: Florence, Italy, 2017; p. 71. [Google Scholar]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM. Complete Guide to Building Information Modeling; Di Giuda, G.M., Villa, V., Eds.; Hoepli: Milan, Italy, 2016; p. 1. [Google Scholar]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling. Adding Intelligence to Laser and Image Based Surveys. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 1–7. [Google Scholar] [CrossRef]
- Della Torre, S.; Pili, A. Built Heritage Information Modelling/Management. Research Perspectives. In Digital Transformation of the Design, Construction and Management Process of the Built Environment; Daniotti, B., Gianinetto, M., Della Torre, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 231–232. [Google Scholar]
- UNI11337:2017; Digitalizzazione del Settore Costruzioni: Dal BIM alla Piattaforma di Filiera. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2017.
- UNI EN ISO 19650:2019; Organization and Digitization of Information about Buildings and Civil Engineering Works, including Building Information Modelling (BIM)—Information Management Using Building Information Modelling. ISO: Geneva, Switzerland, 2019.
- Prager, F.D.; Scaglia, G. Brunelleschi. Studies of His Technology and Inventions; Dover Publications Inc.: New York, NY, USA, 1970. [Google Scholar]
- Sanpaolesi, P. La Cupola di Santa Maria del Fiore; Il progetto—La costruzione; Editrice EDAM: Florence, Italy, 1977. [Google Scholar]
- Mainstone, R.J. Brunelleschi’s Dome. Archit. Rev. 1977, 162, 156–166. [Google Scholar]
- Rossi, P.A. Le Cupole del Brunelleschi; Edizioni Calderini: Bologna, Italy, 1982. [Google Scholar]
- Chiarugi, A.; Quilghini, D. Tracciamento della cupola del Brunelleschi. Muratori e geometria. Critica d’Arte 1984, XLIX, 38–47. [Google Scholar]
- Di Pasquale, S. Brunelleschi. la Costruzione della Cupola di Santa Maria del Fiore; Marsilio Editore: Venice, Italy, 2002. [Google Scholar]
- Matracchi, P.; Giorgi, L. I mattoni del Brunelleschi. Osservazioni sulla Cupola di Santa Maria del Fiore. Costr. Laterizio 2018, 176, 53–61. [Google Scholar]
- Ricci, M. La catena de’ castagni della cupola di S. Maria del Fiore. In Legno e Restauro. Ricerche e Restauri su Architetture e Manufatti Lignei; Tampone, G., Ed.; Messaggerie Toscane: Florence, Italy, 1989; pp. 89–93. [Google Scholar]
- Tampone, G. Il Restauro delle Strutture di Legno; Hoepli Editore: Milan, Italy, 1996. [Google Scholar]
- Bartoli, G.; Betti, M.; Borri, C. Numerical modelling of the structural behavior of the Brunelleschi’s dome of Santa Maria del Fiore. Int. J. Archit. Herit. 2015, 9, 408–429. [Google Scholar] [CrossRef]
- Blasi, C.; Ottoni, F.; Coisson, E.; Tedeschi, C. Battistero di San Giovanni in Firenze. Note su dissesti, lesioni e catene. In Il Battistero di San Giovanni. Conoscenza, Diagnostica, Conservazione; Gurrieri, F., Ed.; Mandragora: Florence, Italy, 2017. [Google Scholar]
- Celli, S. La Catena di Castagni della Cupola di Santa Maria del Fiore. Dall’analisi Storico-Costruttiva Alla Definizione di Uno Strumento Informativo a Supporto della Conservazione e del Restauro. Ph.D. Thesis, Università degli Studi di Parma, Parma, Italy, 12 March 2021. [Google Scholar]
- Ottoni, F.; Celli, S. Dal documento alla conoscenza: La storia costruttiva della cerchiatura lignea della cupola di Santa Maria del Fiore. ArcHistoR 2022, 17, 6–39. [Google Scholar]
- Historical Archive of the Opera di Santa Maria del Fiore (AOSMF).
- Coli, M.; Marchetti, E.; Ripepe, M.; Blasi, C.; Ottoni, F.; Bartoli, G.; Betti, M. The Dome of Santa Maria del Fiore in Florence: Historical, geotechnical and structural studies for its conservation. In Proceedings of the Workshop ATC19 on Geotechnical Engineering for Conservation of Cultural Heritage and Historical Sites, Paris, France, 4–5 September 2013. [Google Scholar]
- Roca, P.; Cervera, M.; Gariup, G.; Pelà, L. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef]
- Dalla Negra, R. (Ed.) La Cupola di Santa Maria del Fiore; Il Rilievo Fotogrammetrico; Sillabe: Livorno, Italy, 2004. [Google Scholar]
- Carlini, F. Il manuale tecnico: L’archiviazione dei dati e la rappresentazione grafica. In La Conservazione Programmata del Patrimonio Storico Architettonico. Linee Guida per il Piano di Manutenzione e Bilancio Scientifico; Della Torre, S., Ed.; Guerrini e Associati: Milan, Italy, 2003; p. 58. [Google Scholar]
- Della Torre, S. (Ed.) La Conservazione Programmata del Patrimonio Storico Architettonico; Linee Guida per il Piano di Manutenzione e Bilancio Scientifico; Guerrini e Associati: Milan, Italy, 2003. [Google Scholar]
- UNI 11257:2007; Maintenance of Buildings—Criteria for the Drafting of Plan and Programme of Maintenance of Buildings—Guidelines. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2007.
- UNI 11119:2004; Cultural Heritage—Wooden Artefacts—Load-Bearing Structures—On Site Inspections for the Diagnosis of Timber Members. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2004.
- UNI 11130:2004; Cultural Heritage—Wooden Artefacts—Terms and Definitions Concerning Wood Deterioration. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2004.
- UNI 11161:2005; Cultural Heritage—Wooden Artefacts—Guideline for Conservation, Restoration and Maintenance. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2005.
- UNI 11035:2010; Legno Strutturale—Classificazione a Vista dei Legnami Secondo la Resistenza Meccanica. Ente Nazionale Italiano di Unificazione (UNI): Milan, Italy, 2010.
- Gli Anni Della Cupola. 1417–1436. Available online: http://duomo.mpiwg-berlin.mpg.de/ (accessed on 3 February 2023).
- Opera di Santa Maria del Fiore. Annual Report. Available online: https://duomo.firenze.it/en/about-us/today/transparency/annual-report (accessed on 3 February 2023).
- Ottoni, F.; Coïsson, E.; Brignoli, A. Historic buildings in seismic zone: For a programming of interventions, between economy and safety. In Proceedings of the Safe Monuments 2014: Workshop between Conservation and Safety of Monumental Buildings and Historical Buildings, Florence, Italy, 28 May 2014; pp. 29–40. [Google Scholar]
- Della Torre, S. Italian perspective on the planned preventive conservation. Front. Archit. Res. 2020, 10, 108–116. [Google Scholar] [CrossRef]
- Acidini Luchinat, C.; Dalla Negra, R. (Eds.) Cupola di Santa Maria del Fiore. Il Cantiere di Restauro 1980–1995; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995. [Google Scholar]
- Ottoni, F.; Coisson, E.; Blasi, C. The crack pattern in Brunelleschi’s dome in Florence. Damage evolution from historical to modern monitoring system analysis. Adv. Mater. Res. 2010, 133–134, 53–64. [Google Scholar] [CrossRef]
- Crespi, P.; Franchi, A.; Ronca, P.; Giordano, N.; Scamardo, M.; Gusmeroli, G.; Schiantarelli, G. From BIM to FEM: The analysis of an historical masonry building. In Building Information Modelling (BIM) in Design, Construction and Operations; Mahdjoubi, L., Brebbia, C.A., Laing, R., Eds.; WIT Press: Southampton, UK, 2015; pp. 581–592. [Google Scholar]
- Jia, J.; Gao, J.; Wang, W.; Ma, L.; Li, J.; Zhang, Z. An automatic generation method of finite element model based on BIM and Ontology. Buildings 2022, 12, 1949. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Brumana, R.; Della Torre, S.; Oreni, D.; Previtali, M.; Cantini, L.; Barazzetti, L.; Franchi, A.; Banfi, F. HBIM challenge among the paradigm of complexity, tools and preservation: The Basilica di Collemaggio 8 years after the earthquake (L’Aquila). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 97–104. [Google Scholar] [CrossRef]
- Santos, D.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. Apparent and resistant section parametric modelling of timber structures in HBIM. J. Build. Eng. 2022, 49, 103990. [Google Scholar] [CrossRef]
- Rodriguez, A.; Ottoni, F.; Spanò, A. La documentazione dei complessi monumentali. In ANANKE; Altralinea: Florence, Italy, 2017; pp. 13–14. [Google Scholar]
- Dezzi Bardeschi, M. Restauro: Punto ed a Capo; Franco Angeli: Milan, Italy, 1991; pp. 421–422. [Google Scholar]
- Italian Code of Cultural Heritage and Landscape; Ministero per i Beni e le Attività Culturali: Rome, Italy, 2004; Chapter III, Section II, Article 29.
CUPOLA OF SANTA MARIA DEL FIORE (Cu) | |||||||
---|---|---|---|---|---|---|---|
Sector 1 S1 | Drum T | Cu. S1.T | |||||
Outer shell Ce | Intrados int | Cu.S1.Ce_int | |||||
Extrados est | Cu.S1.Ce_est | ||||||
Inner shell Ci | Intrados int | Cu.S1.Ci_int | |||||
Extrados est | Cu.S1.Ci_est | ||||||
Ribs C | Corner a | Cu.S1-2.Ca | |||||
Central m | 1 | Cu.S1.Cm1 | |||||
2 | Cu.S1.Cm2 | ||||||
Cavity I | Room 1 V1 | Level 1 L1 | Wooden chain Cl | Beam T | 1 | Cu.S1.I_V1.L1.Cl.T1 | |
2 | Cu.S1.I_V1.L1.Cl.T2 | ||||||
… | |||||||
Joint G | 1 | Cu.S1.I_V1.L1.Cl.G1 | |||||
2 | Cu.S1.I_V1.L1.Cl.G2 | ||||||
… | |||||||
Level 2 L2 | Cu.S1.I_V1.L2 | ||||||
Level 3 L3 | Cu.S1.I_V1.L3 | ||||||
Room 2 V2 | Level 1 L1 | Wooden chain Cl | Beam T | 1 | Cu.S1.I_V2.L1.Cl.T1 | ||
2 | Cu.S1.I_V2.L1.Cl.T2 | ||||||
… | |||||||
Joint G | 1 | Cu.S1.I_V2.L1.Cl.G1 | |||||
2 | Cu.S1.I_V2.L1.Cl.G2 | ||||||
… | |||||||
Level 2 L2 | Cu.S1.I_V2.L2 | ||||||
Level 3 L3 | Cu.S1.I_V2.L3 | ||||||
Room 3 V3 | ... |
Priority | N° |
---|---|
The priority index is expressed through a number between 0 and 15. It results from the sum between the scores attributed to the historical-architectural value (0 to 5 points), to the damage conditions (0 to 5 points) and to the risk conditions (0 to 5 points). The index quickly highlights the existing criticalities, thus enabling to establish proper intervention priorities. | |
Historical-Architectural Value | |
The rating for the historical-architectural value is calculated as the average between the score assigned to the historical significance (dating) and that given to the quality of workmanship. Each sub-field is evaluated using a number ranging from 0 to 5. | |
Dating | |
The score evaluates the historical significance of the object. The highest value (5) is attributed to original elements; the lowest value (0) is assigned to the most recent additions and/or additions of little historical interest. | |
Quality of workmanship | |
Assessment of the technical and qualitative value of the object taking into account the manufacturing of individual elements and the techniques used to assemble them. | |
Damage Conditions | |
Overall evaluation of the conditions of the element, considering both the material decay (state of repair) and the possible loss of efficacy of the element (or system) comparing to its original state. Each sub-field will be assigned a number ranging from 0 to 5. The average between the latter will define the overall score of the section “Damage conditions” | |
State of repair | |
The score reflects the state of conservation of the elements, with particular reference to the decay of the materials. | |
Loss of efficacy | |
The index expresses an evaluation concerning the possible loss of efficacy of the element (residual mechanical properties). This evaluation can be made either basing on instrumental analyses and/or visual inspections | |
Risk Condition | |
Overall assessment of the existing risks defined as the average between the inspection period (0 to 5 point) and criticalities (0 to 5 points). | |
Inspection period | |
The index evaluates the length of time since the last inspection or conservation activity took place. Considering a one-year period as optimal, the minimum score (0) will be assigned if the last inspection occurred within the last year, while the maximum score (5) will be assigned if the last inspection occurred more than five years ago. | |
Criticalities | |
The score evaluates the intrinsic and estrinsic criticalities concerning the element/object and its surrounding environment, also taking into account all the possible interactions with other elements. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celli, S.; Ottoni, F. Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria del Fiore. Sensors 2023, 23, 4860. https://doi.org/10.3390/s23104860
Celli S, Ottoni F. Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria del Fiore. Sensors. 2023; 23(10):4860. https://doi.org/10.3390/s23104860
Chicago/Turabian StyleCelli, Sofia, and Federica Ottoni. 2023. "Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria del Fiore" Sensors 23, no. 10: 4860. https://doi.org/10.3390/s23104860
APA StyleCelli, S., & Ottoni, F. (2023). Managing Information to Improve Conservation: The HBIM of the Wooden Chain of Santa Maria del Fiore. Sensors, 23(10), 4860. https://doi.org/10.3390/s23104860