Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l0 Norm
Abstract
:1. Introduction
2. Background
2.1. Compressed Sensing Theory
2.2. Compressed Imaging System and Reconstruction
- Coding modulation. The coding board used in this system is a 0–1 coding board. The 0 position corresponds to no light, and the 1 position corresponds to light.
- down-sampling. The size of the image block of each pixel of the detector detected is , where , and the sum of the corresponding image block signals is the detection value of the detector.
2.3. BCS-SPL Algorithm
- Obtain the initial solution as ;
- Smooth the reconstructed signal of the th iteration as , where is the Wiener filtering;
- Calculate according to (6) as ;
- Transform the reconstructed signal to thw domain and obtain ;
- Calculate according to (7) as
- Transform back to the spatial domain ;
- Calculate according to (6) as ;
- If the termination condition is satisfied, where
2.4. SL0 Algorithm
3. Materials and Methods
3.1. Construct an Approximate Estimation Function of the Norm
3.2. CGSL0 Algorithm
- Calculate the iteration direction using the conjugate gradient method and search for the optimal value;
- Project the results of the conjugate gradient method into the feasible set using constraints.
3.2.1. Conjugate Gradient Method to Find the Optimal Solution
3.2.2. Project the Optimal Solution into the Feasible Set
3.3. BCS-CGSL0 Algorithm
Algorithm 1: BCS-CGSL0 Algorithm |
Input: measure signal y, measurement matrix , transform domain basis , block size B initialization:
fordo
for do
end
end Output: the reconstructed image |
4. Experiments and Results
4.1. The Comparison of the BCS-CGSL0 and SL0 Series Algorithms
4.2. The Comparison of The BCS-CGSL0 and non-SL0 Series Algorithms
5. Conclusions
- We propose a new function called the inverse trigonometric fraction function, which approximates the norm better than similar functions;
- We propose a method for optimizing the SL0 algorithm (CGSL0), using the inverse trigonometric fraction function to approximate the norm and the modified conjugate gradient method to solve the optimization problem;
- We propose a reconstruction algorithm that combines CGSL0 and BCS-SPL, which has a high reconstruction accuracy and removes the blockiness of reconstructed images.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SL0 | Smoothed Norm |
IRLS | Iteratively Reweighted Least Squares |
BCS-SPL | Block Compressed Sensing with Smoothed Projected Landweber |
BCS-CGSL0 | Block Compressed Sensing with Conjugate Gradient Smoothed Norm |
References
- Kozlov, D.; Ott, P. CFAR Detector for Compressed Sensing Radar Based on l1-norm Minimisation. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 18–21 January 2021. [Google Scholar]
- Porta, C.; Chang, C.I. Progressive Compressively Sensed Band Processing for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2020, 99, 1–13. [Google Scholar]
- Wei, J.; Huang, Y.; Ke, L.; Wang, L. Nonlocal Low-Rank-Based Compressed Sensing for Remote Sensing Image Reconstruction. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1557–1561. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, W.; Shen, Q. Adaptive Algorithm on Block-Compressive Sensing and Noisy Data Estimation. Electronics 2019, 8, 753. [Google Scholar] [CrossRef]
- Kumamoto, K.; Matsuo, S.; Kuroki, Y. A Convolutional Dictionary Learning based l1 Norm Error with Smoothed l0 Norm Regression. In Proceedings of the 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Taipei, Taiwan, 3–6 December 2019. [Google Scholar]
- Adcock, B.; Brugiapaglia, S.; King-Roskamp, M. Iterative and greedy algorithms for the sparsity in levels model in compressed sensing. In Proceedings of the Wavelets and Sparsity XVIII, San Diego, CA, USA, 9 September 2019. [Google Scholar]
- Mohimani, H.; Babaie-Zadeh, M.; Jutten, C. A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed L-0 Norm. IEEE Trans. Signal Process. 2009, 57, 289–301. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, W. Sparse signal reconstruction via iterative support detection. SIAM J. Imaging Sci. 2010, 3, 462–491. [Google Scholar] [CrossRef]
- Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009, 2, 323–343. [Google Scholar] [CrossRef]
- Rodriguez, P.; Wohlberg, B. An iteratively reweighted norm algorithm for total variation regularization. In Proceedings of the 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 29 October–1 November 2006. [Google Scholar]
- Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 2002, 45, 600–616. [Google Scholar] [CrossRef]
- Mun, S.; Fowler, J.E. Block compressed sensing of images using directional transforms. In Proceedings of the 2010 Data Compression Conference, Snowbird, UT, USA, 22 April 2010. [Google Scholar]
- Wang, X.D.; Li, Y.H.; Wang, Z.; Liu, W.G.; Wang, J.N. Self-adaptive block-based compressed sensing imaging for remote sensing applications. J. Appl. Remote Sens. 2020, 14, 016513. [Google Scholar] [CrossRef]
- Li, L.; Liu, P.; Wu, J.; Wang, L.; He, G. Spatiotemporal Remote-Sensing Image Fusion With Patch-Group Compressed Sensing. IEEE Access 2020, 8, 209199–209211. [Google Scholar] [CrossRef]
- Zou, F.; Liu, X.; Lai, Z.; Li, J.; Luo, K. Redundant Dictionary based Pulse Wave Compressed Sensing. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [Google Scholar]
- Zhang, H.; Shan, T.; Liu, S.; Tao, R. Performance Evaluation and Parameter Optimization of Sparse Fourier Transform. Signal Process 2021, 179, 107823. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Chen, S.; Feng, M. Secure image block compressive sensing using chaotic DCT sparse basis and partial chaotic DHT measurement matrix. Sens. Imaging 2020, 21, 1–23. [Google Scholar] [CrossRef]
- Wang, Z.; Hussein, Z.S.; Wang, X. Secure compressive sensing of images based on combined chaotic DWT sparse basis and chaotic DCT measurement matrix. Opt. Lasers Eng. 2020, 134, 106246. [Google Scholar] [CrossRef]
- Figueiredo, M.; Nowak, R.D.; Wright, S.J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE J. Sel. Top. Sign. Proces. 2008, 1, 586–597. [Google Scholar] [CrossRef]
- Lin, W.J.; Zhao, R.Z.; Li, H. The NSL0 Algorithm for Compressive Sensing Signal Reconstruction. J. New Ind. 2011, 1, 78–84. (In Chinese) [Google Scholar]
- Yang, L.L.; Zhao, S.M.; Zheng, B.Y.; Tang, W.J. The Improved Reconstruction Algorithm for Compressive Sensing on SL0. Signal Process 2012, 28, 834–841. (In Chinese) [Google Scholar]
- Li, C. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing; Department of Computational and Applied Mathematics: Houston, TX, USA, 2009; Volume 9. [Google Scholar]
Image | Algorithm | PSNR/dB | SSIM | Tims/s |
---|---|---|---|---|
Goldhill | SL0 | 32.1960 | 0.8913 | 0.5027 |
NSL0 | 34.8157 | 0.9347 | 0.9250 | |
DNSL0 | 35.0088 | 0.9371 | 2.1053 | |
CGSL0 | 35.2736 | 0.9403 | 0.8343 | |
BCS-CGSL0 | 37.5592 | 0.9667 | 0.8078 | |
Clown | SL0 | 30.9515 | 0.9038 | 0.5037 |
NSL0 | 34.6306 | 0.9542 | 0.9064 | |
DNSL0 | 34.9998 | 0.9572 | 1.9203 | |
CGSL0 | 35.6138 | 0.9617 | 0.7518 | |
BCS-CGSL0 | 38.5311 | 0.9778 | 0.8574 |
Sample Rate | Algorithm | PSNR/dB | SSIM | Tims/s |
---|---|---|---|---|
0.1 | SL0 | 14.5255 | 0.1474 | 0.2132 |
NSL0 | 20.2683 | 0.3517 | 0.2832 | |
DNSL0 | 22.3120 | 0.5887 | 1.1115 | |
CGSL0 | 24.8058 | 0.6104 | 1.1550 | |
BCS-CGSL0 | 28.0709 | 0.7988 | 1.0696 | |
0.2 | SL0 | 16.2064 | 0.3754 | 0.2998 |
NSL0 | 22.5954 | 0.6557 | 0.3816 | |
DNSL0 | 23.4365 | 0.6940 | 1.3254 | |
CGSL0 | 26.9654 | 0.8169 | 1.2732 | |
BCS-CGSL0 | 30.9586 | 0.8787 | 0.9225 | |
0.3 | SL0 | 21.5878 | 0.5976 | 0.4207 |
NSL0 | 28.7902 | 0.8659 | 0.6539 | |
DNSL0 | 29.2017 | 0.8752 | 1.6780 | |
CGSL0 | 30.3402 | 0.8999 | 1.6083 | |
BCS-CGSL0 | 33.3883 | 0.9240 | 1.1859 | |
0.4 | SL0 | 28.0617 | 0.7542 | 0.4612 |
NSL0 | 32.9041 | 0.9027 | 0.7291 | |
DNSL0 | 33.0616 | 0.9056 | 1.8192 | |
CGSL0 | 33.2796 | 0.9096 | 0.7126 | |
BCS-CGSL0 | 35.5813 | 0.9508 | 0.9762 | |
0.5 | SL0 | 32.1960 | 0.8913 | 0.5027 |
NSL0 | 34.8157 | 0.9347 | 0.9250 | |
DNSL0 | 35.0088 | 0.9371 | 2.1053 | |
CGSL0 | 35.2736 | 0.9403 | 0.8343 | |
BCS-CGSL0 | 37.5592 | 0.9667 | 0.8078 |
Image | Algorithm | PSNR/dB | SSIM | Tims/s |
---|---|---|---|---|
Goldhill | OMP | 32.5068 | 0.8985 | 5.2730 |
Split-Bregman | 34.6123 | 0.9343 | 13.0204 | |
IRLS | 35.0187 | 0.9387 | 32.6246 | |
FOCUSS | 34.4092 | 0.9260 | 92.4273 | |
BCS-SPL | 34.9058 | 0.9356 | 0.4938 | |
BCS-TVAL3 | 35.6239 | 0.9320 | 8.4257 | |
BCS-CGSL0 | 37.5592 | 0.9667 | 0.8078 | |
Clown | OMP | 33.3586 | 0.9405 | 5.3338 |
Split-Bregman | 34.6607 | 0.9561 | 11.8532 | |
IRLS | 35.2617 | 0.9616 | 32.4094 | |
FOCUSS | 34.4967 | 0.9533 | 79.2619 | |
BCS-SPL | 35.3601 | 0.9348 | 0.7055 | |
BCS-TVAL3 | 36.2245 | 0.9553 | 9.9349 | |
BCS-CGSL0 | 38.5311 | 0.9778 | 0.8574 |
Sample Rate | Algorithm | PSNR/dB | SSIM | Tims/s |
---|---|---|---|---|
0.1 | OMP | 23.2151 | 0.5187 | 0.2837 |
Split-Bregman | 24.1545 | 0.5978 | 110.5349 | |
IRLS | 23.5454 | 0.5734 | 8.0813 | |
FOCUSS | 23.9018 | 0.5737 | 20.9178 | |
BCS-SPL | 25.4181 | 0.6345 | 0.8154 | |
BCS-TVAL3 | 26.0347 | 0.7618 | 10.8333 | |
BCS-CGSL0 | 28.0709 | 0.7988 | 1.0696 | |
0.2 | OMP | 25.9941 | 0.6677 | 0.7621 |
Split-Bregman | 27.6278 | 0.7564 | 55.2424 | |
IRLS | 27.6465 | 0.7571 | 12.6816 | |
FOCUSS | 27.4172 | 0.7411 | 40.7951 | |
BCS-SPL | 27.4142 | 0.7231 | 0.7601 | |
BCS-TVAL3 | 29.6901 | 0.8639 | 10.0676 | |
BCS-CGSL0 | 30.9586 | 0.8787 | 0.9225 | |
0.3 | OMP | 28.4080 | 0.7781 | 1.7354 |
Split-Bregman | 30.2447 | 0.8451 | 32.7416 | |
IRLS | 30.3540 | 0.8485 | 18.1794 | |
FOCUSS | 30.0229 | 0.8329 | 56.2880 | |
BCS-SPL | 29.9553 | 0.8191 | 0.7631 | |
BCS-TVAL3 | 32.4181 | 0.9123 | 9.8397 | |
BCS-CGSL0 | 33.3883 | 0.9240 | 1.1859 | |
0.4 | OMP | 30.5107 | 0.8525 | 3.0058 |
Split-Bregman | 32.6824 | 0.9031 | 19.7576 | |
IRLS | 32.8625 | 0.9023 | 24.7105 | |
FOCUSS | 32.4433 | 0.8947 | 75.5162 | |
BCS-SPL | 32.3505 | 0.8908 | 0.6507 | |
BCS-TVAL3 | 34.5926 | 0.9407 | 9.7414 | |
BCS-CGSL0 | 35.5813 | 0.9508 | 0.9762 | |
0.5 | OMP | 32.5068 | 0.8985 | 5.2730 |
Split-Bregman | 34.6123 | 0.9343 | 13.0204 | |
IRLS | 35.0187 | 0.9387 | 32.6246 | |
FOCUSS | 34.4092 | 0.9260 | 92.4273 | |
BCS-SPL | 34.9058 | 0.9356 | 0.4938 | |
BCS-TVAL3 | 36.2245 | 0.9553 | 9.9349 | |
BCS-CGSL0 | 37.5592 | 0.9667 | 0.8078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, X.; Zeng, C.; Gao, K.; Li, S. Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l0 Norm. Sensors 2023, 23, 4870. https://doi.org/10.3390/s23104870
Zhang Y, Chen X, Zeng C, Gao K, Li S. Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l0 Norm. Sensors. 2023; 23(10):4870. https://doi.org/10.3390/s23104870
Chicago/Turabian StyleZhang, Yongtian, Xiaomei Chen, Chao Zeng, Kun Gao, and Shuzhong Li. 2023. "Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l0 Norm" Sensors 23, no. 10: 4870. https://doi.org/10.3390/s23104870
APA StyleZhang, Y., Chen, X., Zeng, C., Gao, K., & Li, S. (2023). Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l0 Norm. Sensors, 23(10), 4870. https://doi.org/10.3390/s23104870