Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit
Abstract
:1. Introduction
2. Structure and Mechanism
3. Results and Discussion
3.1. Basic Output Performance
3.2. Demonstration of the PRC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
TENG | Triboelectric Nanogenerator |
PRC | Power Regulation Circuit |
PLA | Polylactide |
FEP | Fluorinated Ethylene Propylene |
PMOS | Positive channel Metal Oxide Semiconductor |
C1, C1 | Capacitance of the first-stage circuit |
D1, D2, D3, D4 | Diode |
L1 | Inductance |
Cout | Output Capacitance |
RL | Load |
Vi | Input Voltage |
Vout | Output Voltage |
References
- Le, C.D.; Vo, C.P.; Vu, D.L.; Nguyen, T.H.; Ahn, K.K. Water electrification based triboelectric nanogenerator integrated harmonic oscillator for waste mechanical energy harvesting. Energy Convers. Manag. 2022, 251, 115014. [Google Scholar] [CrossRef]
- Niu, S.M.; Wang, X.F.; Yi, F.; Zhou, Y.S.; Wang, Z.L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975. [Google Scholar] [CrossRef] [PubMed]
- Elsanadidy, E.; Mosa, I.M.; Luo, D.; Xiao, X.; Chen, J.; Wang, Z.L.; Rusling, J.F. Advances in Triboelectric Nanogenerators for Self-powered Neuromodulation. Adv. Funct. Mater. 2023, 33, 2211177. [Google Scholar] [CrossRef]
- Curto, D.; Favuzza, S.; Franzitta, V.; Guercio, A.; Amparo Navarro Navia, M.; Telaretti, E.; Zizzo, G. Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands. Energy 2022, 254, 124456. [Google Scholar] [CrossRef]
- Harada, K.; Yabe, K.; Takami, H.; Goto, A.; Sato, Y.; Hayashi, Y. Two-step approach for quasi-optimization of energy storage and transportation at renewable energy site. Renew. Energy 2023, 211, 846–858. [Google Scholar] [CrossRef]
- Zhang, X.S.; Gao, Q.; Gao, Q.; Yu, X.; Cheng, T.H.; Wang, Z.L. Triboelectric Rotary Motion Sensor for Industrial-Grade Speed and Angle Monitoring. Sensors 2021, 21, 1713. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef]
- Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Pathak, M.; Kumar, R. Synchronous Pre-biasing of Triboelectric Nanogenerator for Enhanced Energy Extraction. IEEE Trans. Power Electron. 2022, 37, 11552–11566. [Google Scholar] [CrossRef]
- Zhang, B.S.; Li, W.B.; Ge, J.W.; Chen, C.G.; Yu, X.; Wang, Z.L.; Cheng, T.H. Single-material-substrated triboelectric-electromagnetic hybrid generator for self-powered multifunctional sensing in intelligent greenhouse. Nano Res. 2023, 16, 3149–3155. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, K.; Wang, X.C.; Liang, J.R.; Chen, Z.Y. Series Synchronized Triple Bias-Flip Circuit: Maximizing the Usage of a Single Storage Capacitor for Piezoelectric Energy Harvesting Enhancement. IEEE Trans. Power Electron. 2021, 36, 6787–6796. [Google Scholar] [CrossRef]
- Fang, L.; Zheng, Q.W.; Hou, W.C.; Gu, J.Y.; Zheng, L. A self-powered tilt angle sensor for tall buildings based on the coupling of multiple triboelectric nanogenerator units. Sens. Actuators A Phys. 2023, 349, 114015. [Google Scholar] [CrossRef]
- Zhang, B.S.; Zhang, S.; Li, W.B.; Gao, Q.; Zhao, D.; Wang, Z.L.; Cheng, T.H. Self-Powered Sensing for Smart Agriculture by Electromagnetic–Triboelectric Hybrid Generator. ACS Nano 2021, 15, 20278–20286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Self-Powered Nanotech. Sci. Am. 2008, 298, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Yu, J.R.; Wei, Y.C.; Wang, Y.F.; Feng, Z.Y.; Cheng, L.Q.; Huo, Z.W.; Lei, Y.Q.; Sun, Q.J. Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. Sensors 2023, 23, 1329. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.S.; Peng, W.Q.; He, J.X.; Zhang, Z.J.; Wu, Z.C.; Zhang, Y.; Wang, S.F.; Nie, S.X. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. Small Methods 2023, 7, 2201251. [Google Scholar] [CrossRef]
- Wang, H.M.; Xu, L.; Bai, Y.; Wang, Z.L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203. [Google Scholar] [CrossRef]
- Cheng, G.; Lin, Z.H.; Lin, L.; Du, Z.l.; Wang, Z.L. Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano 2013, 7, 7383–7391. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Xi, F.; Pang, Y.; Liu, G.; Wang, S.; Li, W.; Zhang, C.; Wang, Z.L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9. [Google Scholar] [CrossRef]
- Zargari, S.; Daie Koozehkanani, Z.; Veladi, H.; Sobhi, J.; Rezania, A. A new Mylar-based triboelectric energy harvester with an innovative design for mechanical energy harvesting applications. Energy Convers. Manag. 2021, 244, 114489. [Google Scholar] [CrossRef]
- Cao, X.L.; Xiong, Y.; Sun, J.; Xie, X.Y.; Sun, Q.J.; Wang, Z.L. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nano-Micro Lett. 2022, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- He, W.C.; Shan, C.C.; Fu, S.K.; Wu, H.Y.; Wang, J.; Mu, Q.J.; Li, G.; Hu, C.G. Large Harvested Energy by Self-Excited Liquid Suspension Triboelectric Nanogenerator with Optimized Charge Transportation Behavior. Adv. Mater. 2023, 35, 2209657. [Google Scholar] [CrossRef] [PubMed]
- Rasel, M.S.; Maharjan, P.; Park, J.Y. Hand clapping inspired integrated multilayer hybrid nanogenerator as a wearable and universal power source for portable electronics. Nano Energy 2019, 63, 103816. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Q.; Shan, C.C.; Du, Y.; He, W.C.; Fu, S.K.; Li, G.; Liu, A.P.; Liu, W.L.; Hu, C.G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637. [Google Scholar] [CrossRef]
- Xu, L.Q.; Xuan, W.P.; Chen, J.K.; Zhang, C.; Tang, Y.Z.; Huang, X.W.; Li, W.J.; Jin, H.; Dong, S.R.; Yin, W.L.; et al. Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy 2021, 83, 105814. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Zhang, H.M.; Marty, F.; Xia, X.; Zi, Y.L.; Bourouina, T.; Galayko, D.; Basset, P. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nat. Commun. 2020, 11, 3221. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.L.; He, W.C.; Guo, H.Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A.P.; Hu, C.G. Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management. Joule 2021, 5, 441–455. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Gu, G.Q.; Zhang, W.H.; Gu, G.X.; Shang, W.Y.; Liu, Y.; Cheng, G.; Du, Z. Double loops power management circuit of pulsed triboelectric nanogenerator with enhanced efficiency at low operating voltage and its application in self-powered flue gas monitoring system. Nano Energy 2023, 110, 108360. [Google Scholar] [CrossRef]
- Xi, F.; Pang, Y.; Li, W.; Jiang, T.; Zhang, L.; Guo, T.; Liu, G.; Zhang, C.; Wang, Z.L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176. [Google Scholar] [CrossRef]
- Jiang, D.W.; Lian, M.Y.; Xu, M.J.; Sun, Q.; Xu, B.B.; Thabet, H.K.; El-Bahy, S.M.; Ibrahim, M.M.; Huang, M.N.; Guo, Z.H. Advances in triboelectric nanogenerator technology—Applications in self-powered sensors, Internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 2023, 6, 57. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Wang, Z.K.; Zi, Y.L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470. [Google Scholar] [CrossRef]
- Zhu, P.C.; Zhang, B.S.; Wang, H.Y.; Wu, Y.H.; Cao, H.J.; He, L.B.; Li, C.Y.; Luo, X.P.; Li, X.; Mao, Y.C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 5098–5104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Leng, B.; Hu, S.; Cheng, X. Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit. Sensors 2023, 23, 4912. https://doi.org/10.3390/s23104912
Li W, Leng B, Hu S, Cheng X. Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit. Sensors. 2023; 23(10):4912. https://doi.org/10.3390/s23104912
Chicago/Turabian StyleLi, Wenbo, Baichuan Leng, Shengyu Hu, and Xiaojun Cheng. 2023. "Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit" Sensors 23, no. 10: 4912. https://doi.org/10.3390/s23104912
APA StyleLi, W., Leng, B., Hu, S., & Cheng, X. (2023). Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit. Sensors, 23(10), 4912. https://doi.org/10.3390/s23104912