Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox
Abstract
:1. Introduction
2. Methodology
2.1. VMD
2.1.1. Construction of Variational Problems
2.1.2. Solution of Variational Problems
2.2. GA Optimizes VMD Parameters
2.3. Sensitive IMF Discriminant Algorithm and Hilbert Transform
2.4. Local Hilbert Instantaneous Energy Spectrum
3. Experiments
3.1. Current Data Acquisition
3.2. Current Signal Decomposition of VMD-GA
3.3. Sensitivity Calculation of Fault Sub-Band
3.4. Feature Learning and Pattern Classification Based on ShuffleNet-V2
3.5. Contrast Experiment
4. Result and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, K.X.; Kang, L.; Chen, X.X.; He, M.C.; Zhu, C.; Li, D. A Review of Intelligent Unmanned Mining Current Situation and Development Trend. Energies 2022, 15, 513. [Google Scholar] [CrossRef]
- Wang, G.F.; Pang, Y.H.; Ren, H.W. Intelligent coal mining pattern and technological path. J. Min. Strat. Control Eng. 2020, 2, 5–19. [Google Scholar]
- Liang, X.H.; Zuo, M.J.; Feng, Z.P. Dynamic modeling of gearbox faults: A review. Mech. Syst. Signal Process. 2018, 98, 852–876. [Google Scholar] [CrossRef]
- Ma, H.Z.; Wang, X.W.; Li, B.; Liu, Z.Y.; Bi, W.J.; Wei, X. Study on the mechanical effect and wear behaviour of middle trough of a scraper conveyor based on DEM–MBD. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 1363–1374. [Google Scholar] [CrossRef]
- Gómez, M.J.; Marklund, P.; Strombergsson, D.; Castejón, C.; García, P. Analysis of vibration signals of drivetrain failures in wind turbines for condition monitoring. Exp. Tech. 2021, 45, 1–12. [Google Scholar] [CrossRef]
- Hao, H.; Feng, F.Z.; Jiang, F. Gear Fault Detection in a Planetary Gearbox Using Deep Belief Network. Math. Probl. Eng. 2022, 2022, 9908074. [Google Scholar] [CrossRef]
- Kia, S.H.; Henao, H.; Capolino, G. Gear tooth surface damage fault detection using induction machine stator current space vector analysis. IEEE Trans. Ind. Electron. 2015, 62, 1866–1878. [Google Scholar] [CrossRef]
- Blodt, M.; Chabert, M.; Regnier, J.; Faucher, J. Mechanical load fault detection in induction motors by stator current time-frequency analysis. IEEE Trans. Ind. Appl. 2006, 42, 1454–1463. [Google Scholar] [CrossRef]
- Blodt, M.; Bonacci, D.; Regnier, J. On-line monitoring of mechanical faults in variable-speed induction motor drives using the Wigner distribution. IEEE Trans. Ind. Electron. 2008, 55, 522–533. [Google Scholar] [CrossRef]
- Mohanty, A.R.; Kar, C. Fault Detection in a Multistage Gearbox by Demodulation of Motor Current Waveform. IEEE Trans. Ind. Electron. 2006, 53, 1285–1297. [Google Scholar] [CrossRef]
- Zhao, S.F.; Wang, P.F.; Li, S.J. Study on the Fault Diagnosis Method of Scraper Conveyor Gear under Time-Varying Load Condition. Appl. Sci. 2020, 10, 5053. [Google Scholar] [CrossRef]
- Xiao, M.H.; Zhang, W.; Zhao, Y.F.; Xu, X.M.; Zhou, S.F. Fault diagnosis of gearbox based on wavelet packet transform and CLSPSO-BP. Multimed. Tools Appl. 2022, 81, 11519–11535. [Google Scholar] [CrossRef]
- Liu, H.M.; Wang, X.; Lu, C. Rolling Bearing Fault Diagnosis under Variable Conditions Using Hilbert-Huang Transform and Singular Value Decomposition. Math. Probl. Eng. 2014, 2014, 765621. [Google Scholar] [CrossRef]
- Han, D.Y.; Zhao, N.; Shi, P.M. Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension. J. Mech. Sci. Technol 2019, 33, 487–494. [Google Scholar] [CrossRef]
- Muhammad, A.; Shahab, K.; Syeda, T.; Hafiz, A.; Luqman, N. Vibration Based Gear Fault Diagnosis under Empirical Mode Decomposition and Power Spectrum Density Analysis. Adv. Sci. Technol. Res. J. 2019, 13, 192–200. [Google Scholar]
- Liu, C.; Cheng, G.; Chen, X.H.; Pang, Y.S. Planetary gears feature extraction and fault diagnosis method based on VMD and CNN. Sensors 2018, 18, 1523. [Google Scholar] [CrossRef]
- Fan, H.; Yang, Y.Q.; Ma, H.W. Root Crack Identification of Sun Gear in Planetary Gear System Combining Fault Dynamics with VMD Algorithm. Shock Vib. 2021, 2021, 5561417. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhong, M. A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions. Measurement 2020, 163, 108067. [Google Scholar] [CrossRef]
- Lei, Y.G.; Yang, B.; Jiang, X.W.; Jia, F.; Li, N.P.; Nandi, A. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- He, F.; Ye, Q. A Bearing Fault Diagnosis Method Based on Wavelet Packet Transform and Convolutional Neural Network Optimized by Simulated Annealing Algorithm. Sensors 2022, 22, 1410. [Google Scholar] [CrossRef]
- Zhou, X.K.; Yu, J.B. Gearbox Fault Diagnosis Based on deep One-dimension Residual Convolutional Auto-encode. J. Mech. Eng. 2020, 56, 96–108. [Google Scholar]
- Azamfer, M.; Singh, J.; Bravo-Imaz, I. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [Google Scholar] [CrossRef]
- Ma, N.N.; Zhang, X.; Zhang, X.T. ShuffleNet-V2: Practical Guidelines for Efficient CNN Architecture Design; Springer: Cham, Switzerland, 2018; pp. 122–138. [Google Scholar]
- Luo, Z.Y.; Tan, H.K.; Dong, X. A fault diagnosis method for rotating machinery with variable speed based on multi-feature fusion and improved ShuffleNet-V2. Meas. Sci. Technol. 2023, 34, 035110. [Google Scholar] [CrossRef]
- Kumar, A.; Zhou, Y.Q.; Xiang, J.W. Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects. Measurement 2021, 168, 108402. [Google Scholar] [CrossRef]
- Ding, J.K.; Xiao, D.M.; Li, X.J. Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm. IEEE Access 2020, 8, 18456–18474. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, X.; Zhang, Q. An improved method for fault diagnosis of rolling bearings of power generation equipment in a smart microgrid. Front. Energy Res. 2022, 10, 1006215. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, L.; Tian, Y.; Li, Y.B. An ensemble fault diagnosis method for rotating machinery based on wavelet packet transform and convolutional neural networks. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 11600–11612. [Google Scholar] [CrossRef]
- Wang, Z.B.; Liang, B.; Si, L.; Tong, K.W.; Tan, C. A Novel Shearer Cutting State Recognition Method Based on Improved Variational Mode Decomposition and LSSVM with Acoustic Signals. Shock Vib. 2020, 2020, 8835462. [Google Scholar] [CrossRef]
- Sun, S.G.; Pang, Y.; Wang, J.Q. EEMD harmonic detection method based on the new wavelet threshold denoising pretreatment. Power Syst. Prot. Control 2016, 44, 42–48. [Google Scholar]
- Zhang, S.Q.; Zhang, Y. Harmonic detection method based on permutation entropy and variational modal decomposition optimized by genetic algorithm. Rev. Sci. Instrum. 2021, 92, 025118. [Google Scholar] [CrossRef]
- Shi, R.M.; Wang, B.K.; Wang, Z.Y.; Liu, J.Q.; Feng, X.Y.; Dong, L. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm. Entropy 2022, 24, 825. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.M.; Tian, G. Feature extraction method of ship radiated noise based on BOA-VMD and slope entropy. Front. Phys. 2022, 10, 1043070. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Liang, J.; Zhang, L.J.; Ji, Q.C.; Wang, J.Q. Research on the Rotor Fault Diagnosis Method Based on QPSO-VMD-PCA-SVM. Front. Energy Res. 2022, 16648714, 13. [Google Scholar] [CrossRef]
- Wang, Y.K.; Li, H.R.; Wang, B.; Xu, B.H. Spatial Information Entropy and Its Application in the Degradation State Identification of Hydraulic Pump. Math. Probl. Eng. 2015, 2015, 532684. [Google Scholar] [CrossRef]
- Hafida, M.; Fakher, C.; Ahmed, F. Detection of gear faults in variable rotating speed using variational mode decomposition (VMD). Mech. Ind. 2016, 17, 207. [Google Scholar]
- Jiang, J.; Chen, R.Y.; Zhang, C.H.; Chen, M.; Li, X.H.; Ma, G.M. Dynamic Fault Prediction of Power Transformers Based on Lasso Regression and Change Point Detection by Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 2130–2137. [Google Scholar] [CrossRef]
- Bian, X.H.; Ling, M.X.; Chu, Y.Y.; Liu, P.; Tan, X.Y. Spectral denoising based on Hilbert–Huang transform combined with F-test. Front. Chem. 2022, 10, 949461. [Google Scholar] [CrossRef]
- Erhu, D.; Long, A.; Li, Y.H.; Wu, C. Hilbert spectrum analysis method of blast vibration signal based on HHT instantaneous phase optimization. Appl. Acoust. 2022, 192, 108732. [Google Scholar]
- Rivas-Davalos, F.; Irving, M.R. An efficient genetic algorithm for optimal large-scale power distribution network planning. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003; Volume 3. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Liu, H.C.; Yao, D.C.; Yang, J.W.; Xi, L. Lightweight Convolutional Neural Network and Its Application in Rolling Bearing Fault Diagnosis under Variable Working Conditions. Sensors 2019, 19, 4827. [Google Scholar] [CrossRef]
- Jesus, D.S.; Martin, V.; Pablo, A. Fourier-Based Adaptive Signal Decomposition Method Applied to Fault Detection in Induction Motors. Machines 2022, 10, 757. [Google Scholar]
Gear Name | Number of Teeth |
---|---|
Bevel gear (driving) | 36 |
Bevel gear (driven) | 70 |
Helical gear (driving) | 36 |
Helical gear (driven) | 83 |
Sun wheel | 17 |
Planetary gear | 21 |
Planetary gear | 71 |
Parameter | Setting |
---|---|
Penalty factor | 1000~4500 |
Decomposition layers | 3~8 |
Generations | 10 |
Population size | 20 |
Mutation probability | 0.18 |
Crossover probability | 0.7 |
Neural Network | Dataset | Duration (/s) | Hardware Resources | Learning Rate | Training Accuracy Rate (%) | Validation Accuracy Rate (%) |
---|---|---|---|---|---|---|
ShuffleNet-V2 | VMD-GA-Hilbert spectrogram | 778 | GTX1660ti | 0.001 | 94.35 | 91.66 |
ShuffleNet-V2 | Wavelet time–frequency | 780 | GTX1660ti | 0.001 | 91.13 | 90.00 |
ResNet-18 | VMD-GA-Hilbert spectrogram | 144 | GTX1660ti | 0.0001 | 85.00 | 84.17 |
ResNet-18 | Wavelet time–frequency | 185 | GTX1660ti | 0.0001 | 83.60 | 80.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Guo, S.; Zhao, S.; Lu, Z.; Xing, Z.; Jing, Z.; Wei, Z.; Wang, Y. Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox. Sensors 2023, 23, 4951. https://doi.org/10.3390/s23104951
Wang W, Guo S, Zhao S, Lu Z, Xing Z, Jing Z, Wei Z, Wang Y. Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox. Sensors. 2023; 23(10):4951. https://doi.org/10.3390/s23104951
Chicago/Turabian StyleWang, Weibing, Shuai Guo, Shuanfeng Zhao, Zhengxiong Lu, Zhizhong Xing, Zelin Jing, Zheng Wei, and Yuan Wang. 2023. "Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox" Sensors 23, no. 10: 4951. https://doi.org/10.3390/s23104951
APA StyleWang, W., Guo, S., Zhao, S., Lu, Z., Xing, Z., Jing, Z., Wei, Z., & Wang, Y. (2023). Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox. Sensors, 23(10), 4951. https://doi.org/10.3390/s23104951