Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Physical Activity and Aggression Episodes
2.3. Sensor-Drived Features
2.4. Random Forest Classifier Approach for Feature Selection
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Difference in Features between Aggression and Non-Aggression Epochs
3.3. Optimal Feature Selection and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerson, R.; Malas, N.; Feuer, V.; Silver, G.H.; Prasad, R.; Mroczkowski, M.M. Best Practices for Evaluation and Treatment of Agitated Children and Adolescents (BETA) in the Emergency Department: Consensus Statement of the American Association for Emergency Psychiatry. West. J. Emerg. Med. 2019, 20, 409–418. [Google Scholar] [CrossRef]
- Oerbeck, B.; Overgaard, K.R.; Aspenes, S.T.; Pripp, A.H.; Mordre, M.; Aase, H.; Reichborn-Kjennerud, T.; Zeiner, P. ADHD, comorbid disorders and psychosocial functioning: How representative is a child cohort study? Findings from a national patient registry. BMC Psychiatry 2017, 17, 23. [Google Scholar] [CrossRef]
- Swanson, J.M.; Sergeant, J.A.; Taylor, E.; Sonuga-Barke, E.J.; Jensen, P.S.; Cantwell, D.P. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998, 351, 429–433. [Google Scholar] [CrossRef]
- Steinhausen, H.C.; Nøvik, T.S.; Baldursson, G.; Curatolo, P.; Lorenzo, M.J.; Rodrigues Pereira, R.; Ralston, S.J.; Rothenberger, A. Co-existing psychiatric problems in ADHD in the ADORE cohort. Eur. Child Adolesc. Psychiatry 2006, 15 (Suppl. S1), I25–I29. [Google Scholar] [CrossRef]
- Jensen, C.M.; Steinhausen, H.C. Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. Atten. Deficit Hyperact. Disord. 2015, 7, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, S. Practice parameter for the assessment and treatment of children and adolescents with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 2007, 46, 894–921. [Google Scholar] [CrossRef]
- Willcutt, E.G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurother. J. Am. Soc. Exp. NeuroTherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Kraut, A.A.; Langner, I.; Lindemann, C.; Banaschewski, T.; Petermann, U.; Petermann, F.; Mikolajczyk, R.T.; Garbe, E. Comorbidities in ADHD children treated with methylphenidate: A database study. BMC Psychiatry 2013, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Mahone, E.M.; Denckla, M.B. Attention-Deficit/Hyperactivity Disorder: A Historical Neuropsychological Perspective. J. Int. Neuropsychol. Soc. JINS 2017, 23, 916–929. [Google Scholar] [CrossRef]
- Foster, E.M.; Jones, D.E. The high costs of aggression: Public expenditures resulting from conduct disorder. Am. J. Public Health 2005, 95, 1767–1772. [Google Scholar] [CrossRef]
- National Institutes of Health Consensus Development Conference Statement: Diagnosis and treatment of attention-deficit/hyperactivity disorder (ADHD). J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 182–193. [CrossRef]
- Mroczkowski, M.M.; Walkup, J.T.; Appelbaum, P.S. Assessing Violence Risk in Adolescents in the Pediatric Emergency Department: Systematic Review and Clinical Guidance. West. J. Emerg. Med. 2021, 22, 533–542. [Google Scholar] [CrossRef]
- Mistler, L.A.; Friedman, M.J. Instruments for Measuring Violence on Acute Inpatient Psychiatric Units: Review and Recommendations. Psychiatr. Serv. 2022, 73, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.F.; Newcorn, J.H.; Saylor, K.E.; Amann, B.H.; Scahill, L.; Robb, A.S.; Jensen, P.S.; Vitiello, B.; Findling, R.L.; Buitelaar, J.K. Maladaptive Aggression: With a Focus on Impulsive Aggression in Children and Adolescents. J. Child Adolesc. Psychopharmacol. 2019, 29, 576–591. [Google Scholar] [CrossRef]
- Althoff, R.R.; Ametti, M. Measurement of Dysregulation in Children and Adolescents. Child Adolesc. Psychiatr. Clin. N. Am. 2021, 30, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Balia, C.; Carucci, S.; Coghill, D.; Zuddas, A. The pharmacological treatment of aggression in children and adolescents with conduct disorder. Do callous-unemotional traits modulate the efficacy of medication? Neurosci. Biobehav. Rev. 2018, 91, 218–238. [Google Scholar] [CrossRef] [PubMed]
- Pisano, S.; Masi, G. Recommendations for the pharmacological management of irritability and aggression in conduct disorder patients. Expert Opin. Pharmacother. 2020, 21, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Findling, R.L.; Townsend, L.; Brown, N.V.; Arnold, L.E.; Gadow, K.D.; Kolko, D.J.; McNamara, N.K.; Gary, D.S.; Kaplin, D.B.; Farmer, C.A.; et al. The Treatment of Severe Childhood Aggression Study: 12 Weeks of Extended, Blinded Treatment in Clinical Responders. J. Child Adolesc. Psychopharmacol. 2017, 27, 52–65. [Google Scholar] [CrossRef]
- Breaux, R.; Baweja, R.; Eadeh, H.-M.; Shroff, D.M.; Cash, A.R.; Swanson, C.S.; Knehans, A.; Waxmonsky, J.G. Systematic Review and Meta-analysis: Pharmacological and Nonpharmacological Interventions for Persistent Nonepisodic Irritability. J. Am. Acad. Child Adolesc. Psychiatry 2023, 62, 318–334. [Google Scholar] [CrossRef]
- Kam, H.J.; Lee, K.; Cho, S.M.; Shin, Y.M.; Park, R.W. High-Resolution Actigraphic Analysis of ADHD: A Wide Range of Movement Variability Observation in Three School Courses—A Pilot Study. Healthc. Inform. Res. 2011, 17, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martínez, D.; Casaseca-de-la-Higuera, P.; Alberola-López, S.; Andrés-de-Llano, J.; López-Villalobos, J.A.; Ardura-Fernández, J.; Alberola-López, C. Nonlinear analysis of actigraphic signals for the assessment of the attention-deficit/hyperactivity disorder (ADHD). Med. Eng. Phys. 2012, 34, 1317–1329. [Google Scholar] [CrossRef]
- O’Mahony, N.; Florentino-Liano, B.; Carballo, J.J.; Baca-García, E.; Rodríguez, A.A. Objective diagnosis of ADHD using IMUs. Med. Eng. Phys. 2014, 36, 922–926. [Google Scholar] [CrossRef]
- Jeannet, P.Y.; Aminian, K.; Bloetzer, C.; Najafi, B.; Paraschiv-Ionescu, A. Continuous monitoring and quantification of multiple parameters of daily physical activity in ambulatory Duchenne muscular dystrophy patients. Eur. J. Paediatr. Neurol. 2011, 15, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.P.; Razjouyan, J.; Lester, H.; Dadabhoy, H.; Amirmazaheri, M.; Reesor-Oyer, L.; O’Connor, T.M.; Hernandez, D.C.; Najafi, B.; Alfano, C.A.; et al. Later sleep timing predicts accelerated summer weight gain among elementary school children: A prospective observational study. Int. J. Behav. Nutr. Phys. Act 2021, 18, 94. [Google Scholar] [CrossRef]
- Welch, V.; Wy, T.J.; Ligezka, A.; Hassett, L.C.; Croarkin, P.E.; Athreya, A.P.; Romanowicz, M. Use of mobile and wearable artificial intelligence in child and adolescent psychiatry: Scoping review. J. Med. Internet Res. 2022, 24, e33560. [Google Scholar] [CrossRef] [PubMed]
- Lindhiem, O.; Goel, M.; Shaaban, S.; Mak, K.J.; Chikersal, P.; Feldman, J.; Harris, J.L. Objective measurement of hyperactivity using mobile sensing and machine learning: Pilot study. JMIR Form. Res. 2022, 6, e35803. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.S.; Mazefsky, C.A.; Ioannidis, S.; Erdogmus, D.; Siegel, M. Predicting aggression to others in youth with autism using a wearable biosensor. Autism Res. Off. J. Int. Soc. Autism Res. 2019, 12, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, T.M.; Rescorla, L. Manual for the ASEBA School-Age Forms & Profiles: An Integrated System of Multi-Informant Assessment; ASEBA: Burlington, VT, USA, 2001. [Google Scholar]
- Guerrera, S.; Menghini, D.; Napoli, E.; Di Vara, S.; Valeri, G.; Vicari, S. Assessment of Psychopathological Comorbidities in Children and Adolescents with Autism Spectrum Disorder Using the Child Behavior Checklist. Front. Psychiatry 2019, 10, 535. [Google Scholar] [CrossRef]
- Busner, J.; Targum, S.D. The clinical global impressions scale: Applying a research tool in clinical practice. Psychiatry 2007, 4, 28–37. [Google Scholar]
- Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Arlington, VA, USA, 2013.
- Ogden, C.L.; Kuczmarski, R.J.; Flegal, K.M.; Mei, Z.; Guo, S.; Wei, R.; Grummer-Strawn, L.M.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. Centers for Disease Control and Prevention 2000 growth charts for the United States: Improvements to the 1977 National Center for Health Statistics version. Pediatrics 2002, 109, 45–60. [Google Scholar] [CrossRef]
- Calarge, C.A.; Schlechte, J.A.; Burns, T.L.; Zemel, B.S. The effect of psychostimulants on skeletal health in boys co-treated with risperidone. J. Pediatr. 2015, 166, 1449–1454 e1441. [Google Scholar] [CrossRef] [PubMed]
- Blader, J.C.; Pliszka, S.R.; Kafantaris, V.; Foley, C.A.; Carlson, G.A.; Crowell, J.A.; Bailey, B.Y.; Sauder, C.; Daviss, W.B.; Sinha, C.; et al. Stepped Treatment for Attention-Deficit/Hyperactivity Disorder and Aggressive Behavior: A Randomized, Controlled Trial of Adjunctive Risperidone, Divalproex Sodium, or Placebo After Stimulant Medication Optimization. J. Am. Acad. Child Adolesc. Psychiatry 2021, 60, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Leeger-Aschmann, C.S.; Schmutz, E.A.; Zysset, A.E.; Kakebeeke, T.H.; Messerli-Bürgy, N.; Stülb, K.; Arhab, A.; Meyer, A.H.; Munsch, S.; Jenni, O.G.; et al. Accelerometer-derived physical activity estimation in preschoolers—Comparison of cut-point sets incorporating the vector magnitude vs the vertical axis. BMC Public Health 2019, 19, 513. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.A.; Clevenger, K.A.; Leslie, R.E.; Ragan, M.A. Comparison of Accelerometer-Based Cut-Points for Children’s Physical Activity: Counts vs. Steps. Children 2018, 5, 105. [Google Scholar] [CrossRef] [PubMed]
- Actigraph Documentation. Vector Magnitude. Available online: https://actigraphcorp.my.site.com/support/s/article/What-is-VM-Vector-Magnitude (accessed on 16 January 2023).
- Actigraph Documentation. Kilocalories Equation. Available online: https://actigraphcorp.my.site.com/support/s/article/What-is-the-difference-among-the-Energy-Expenditure-Algorithms (accessed on 16 January 2023).
- Rogers, J.; Gunn, S. Identifying Feature Relevance Using a Random Forest. In Subspace, Latent Structure and Feature Selection; Springer: Berlin/Heidelberg, Germany, 2006; pp. 173–184. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Japkowicz, N.; Stephen, S. The Class Imbalance Problem: A Systematic Study. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, C.; Ding, Y.; Lyu, X.; Liu, Y. A Novel behavioral scoring model for estimating probability of default over time in peer-to-peer lending. Electron. Commer. Res. Appl. 2018, 27, 74–82. [Google Scholar] [CrossRef]
- Sage, A.J. Random Forest Robustness, Variable Importance, and Tree Aggregation. Ph.D. Dissertation, Department of Statistics, Iowa State University, Ames, IA, USA, 2018. [Google Scholar]
- Javeed, A.; Zhou, S.; Yongjian, L.; Qasim, I.; Noor, A.; Nour, R. An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection. IEEE Access 2019, 7, 180235–180243. [Google Scholar] [CrossRef]
- Ramadhan, M.M.; Sitanggang, I.S.; Nasution, F.R.; Ghifari, A. Parameter Tuning in Random Forest Based on Grid Search Method for Gender Classification Based on Voice Frequency. DEStech Trans. Comput. Sci. Eng. 2017, 10. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E. Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto Int. 2015, 30, 810–821. [Google Scholar] [CrossRef]
- Lee, K.H.; Baillargeon, R.H.; Vermunt, J.K.; Wu, H.X.; Tremblay, R.E. Age differences in the prevalence of physical aggression among 5-11-year-old Canadian boys and girls. Aggress Behav. 2007, 33, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Teymoori, A.; Cote, S.M.; Jones, B.L.; Nagin, D.S.; Boivin, M.; Vitaro, F.; Orri, M.; Tremblay, R.E. Risk Factors Associated with Boys’ and Girls’ Developmental Trajectories of Physical Aggression From Early Childhood Through Early Adolescence. JAMA Netw. Open 2018, 1, e186364. [Google Scholar] [CrossRef] [PubMed]
- Broidy, L.M.; Nagin, D.S.; Tremblay, R.E.; Bates, J.E.; Brame, B.; Dodge, K.A.; Fergusson, D.; Horwood, J.L.; Loeber, R.; Laird, R.; et al. Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: A six-site, cross-national study. Dev. Psychol. 2003, 39, 222–245. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, R.E. Early development of physical aggression and early risk factors for chronic physical aggression in humans. Curr. Top. Behav. Neurosci. 2014, 17, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Larranaga, E.; Yubero, S.; Villora, B. Families, Parenting and Aggressive Preschoolers: A Scoping Review of Studies Examining Family Variables Related to Preschool Aggression. Int. J. Environ. Res. Public Health 2022, 19, 5556. [Google Scholar] [CrossRef] [PubMed]
- DuRant, R.H.; Getts, A.; Cadenhead, C.; Emans, S.J.; Woods, E.R. Exposure to violence and victimization and depression, hopelessness, and purpose in life among adolescents living in and around public housing. J. Dev. Behav. Pediatr. 1995, 16, 233–237. [Google Scholar] [CrossRef]
- DuRant, R.H.; Cadenhead, C.; Pendergrast, R.A.; Slavens, G.; Linder, C.W. Factors associated with the use of violence among urban black adolescents. Am. J. Public Health 1994, 84, 612–617. [Google Scholar] [CrossRef]
- Kumar Jain, D.; Liu, X.; Neelakandan, S.; Prakash, M. Modeling of human action recognition using hyperparameter tuned deep learning model. J. Electron. Imaging 2022, 32, 011211. [Google Scholar] [CrossRef]
- Compliance Review. Available online: https://www2.ed.gov/about/offices/list/ocr/docs/investigations/03105001-a.html (accessed on 11 April 2023).
Name | Unit | Description |
---|---|---|
Vector magnitude (vm) | cpm | Total vector magnitude of three accelerometer axes, calculated by the ActiGraph using the following equation [37]: |
Cadence | steps/min | Step counts per minute |
% Standing | % of epoch | Percentage of an epoch when participant was standing |
% Sitting | % of epoch | Percentage of an epoch when participant was sitting |
% Lying | % of epoch | Percentage of an epoch when participant was lying |
Kilocalories | cpm | Kilocalories expended per minute, calculated by the Actigraph using the following equation [38]: |
MET Rate | cpm | Metabolic equivalents to measure energy expenditure |
Variables | N = 39 |
---|---|
Demographics | |
Age, years | 9.4 ± 1.7 |
Sex (Male), n (%) | 31 (79.5%) |
Hispanic, n (%) | 13 (33.3%) |
Race, (%) | |
White | 29 (74.4%) |
Black | 5 (12.8%) |
Native American | 1 (2.6%) |
Others | 4 (10.3%) |
Height (cm) | 136.2 ± 12.6 |
Height Z-score | 0.008 ± 0.893 |
Weight (kg) | 32.1 ± 9.2 |
Body Mass Index, kg/m2 | 17.0 ± 1.9 |
Body Mass Index Z-score | 0.1 ± 0.8 |
Clinical Characteristics | |
Medication, N (%) | 34 (87.2%) |
Daily Average Weight and Adherence Adjusted Dose in MPH Equivalency (MPH Eq mg/kg) | 0.51 ± 0.37 |
CBCL, Total Score | 44.2 ± 10.4 |
Aggressive Behavior | 60.7 ± 9.1 |
Rule-Breaking Behavior | 57.4 ± 7.6 |
Attention Problems | 64.1 ± 9.1 |
Internalizing Problems | 54.1 ± 12.1 |
Externalizing Problems | 58.1 ± 10.9 |
CGI-Severity Score | 4.7 ± 1.0 |
Variables | Aggression Epochs N = 132 | Non-Aggression Epochs N = 132 | p-Value |
---|---|---|---|
Physical activity | |||
Vector magnitude (vm) | 1580.7 ± 1831.1 | 873.3 ± 1137.2 | 0.027 * |
Cadence (cpm) | 15.3 ± 22.5 | 8.1 ± 13.6 | 0.102 |
% Standing | 51.4 ± 47.7 | 44.6 ± 46.2 | 0.320 |
% Sitting | 16.9 ± 34.2 | 26.4 ± 41.9 | 0.176 |
% Lying | 15.7 ± 36.0 | 14.9 ± 35.7 | 0.478 |
Kilocalories (cpm) | 0.27 ± 0.46 | 0.17 ± 0.23 | 0.427 |
MET rate (cpm) | 1.15 ± 0.43 | 1.04 ± 0.12 | 0.132 |
Observed day type | |||
Non-school day | 47.0% | 47.7% | 0.902 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Rouzi, M.D.; Atique, M.M.U.; Finco, M.G.; Mishra, R.K.; Barba-Villalobos, G.; Crossman, E.; Amushie, C.; Nguyen, J.; Calarge, C.; et al. Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring. Sensors 2023, 23, 4949. https://doi.org/10.3390/s23104949
Park C, Rouzi MD, Atique MMU, Finco MG, Mishra RK, Barba-Villalobos G, Crossman E, Amushie C, Nguyen J, Calarge C, et al. Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring. Sensors. 2023; 23(10):4949. https://doi.org/10.3390/s23104949
Chicago/Turabian StylePark, Catherine, Mohammad Dehghan Rouzi, Md Moin Uddin Atique, M. G. Finco, Ram Kinker Mishra, Griselda Barba-Villalobos, Emily Crossman, Chima Amushie, Jacqueline Nguyen, Chadi Calarge, and et al. 2023. "Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring" Sensors 23, no. 10: 4949. https://doi.org/10.3390/s23104949
APA StylePark, C., Rouzi, M. D., Atique, M. M. U., Finco, M. G., Mishra, R. K., Barba-Villalobos, G., Crossman, E., Amushie, C., Nguyen, J., Calarge, C., & Najafi, B. (2023). Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring. Sensors, 23(10), 4949. https://doi.org/10.3390/s23104949