Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Fraudulent Pet Food Samples
2.3. FT-IR Spectral Data Collection
2.4. Spectral Data Analysis
2.4.1. Prediction Analysis Models Using PLSR, PCR, and HLA/GO
2.4.2. Construction of 1D CNN Model Architecture
3. Results and Discussions
3.1. Spectral Interpretation of Melamine-Adulterated Pet Food
3.2. Spectral Interpretation of Cyanuric Acid-Adulterated Pet Food
3.3. Dirichlet Distribution Algorithm
3.4. Model Development for FT-IR Spectroscopy
3.5. PLSR, PCR, and HLA/GO Prediction Results for Melamine in Pet Food
3.6. PLSR, PCR, and HLA/GO Prediction Results for Cyanuric Acid in Pet Food
3.7. Beta Coefficients for the PLSR Model Developed for Pet Food Contaminated with Melamine or Cyanuric Acid
3.8. 1D CNN Analysis for Melamine and Cyanuric Acid Predictions in Pet Food
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinmusire, O.O.; El-Yuguda, A.D.; Musa, J.A.; Oyedele, O.A.; Sulyok, M.; Somorin, Y.M.; Ezekiel, C.N.; Krska, R. Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Res. 2019, 35, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Li, A.; Wang, J.; An, G.; Guan, S. Mycotoxin Contamination of Feeds and Raw Materials in China in Year 2021. Front. Vet. Sci. 2022, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abbas, O.; Lecler, B.; Dardenne, P.; Baeten, V. Detection of melamine and cyanuric acid in feed ingredients by near infrared spectroscopy and chemometrics. J. Near Infrared Spectrosc. 2013, 21, 183–194. [Google Scholar] [CrossRef]
- De Lourdes Mendes Finete, V.; Gouvêa, M.M.; De Carvalho Marques, F.F.; Netto, A.D.P. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods? Food Chem. 2013, 141, 3649–3655. [Google Scholar] [CrossRef]
- Miao, H.; Fan, S.; Wu, Y.N.; Zhang, L.; Zhou, P.P.; Li, J.G.; Chen, H.J.; Zhao, Y.F. Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomed. Environ. Sci. 2009, 22, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Rovina, K.; Siddiquee, S. A review of recent advances in melamine detection techniques. J. Food Compos. Anal. 2015, 43, 25–38. [Google Scholar] [CrossRef]
- Patel, K.; Jones, K. Analytical method for the quantitative determination of cyanuric acid as the degradation product of sodium dichloroisocyanurate in urine by liquid chromatography mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 853, 360–363. [Google Scholar] [CrossRef]
- Ranganathan, A.; Pedireddi, V.R.; Rao, C.N.R.; Box, J.P.O.; Recei, V.; No, V. Hydrothermal Synthesis of Organic Channel Structures: 1: 1 Hydrogen-Bonded Adducts of Melamine with Cyanuric and Trithiocyanuric Acids Chemistry & Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research (M)-forming rosett. J. Am. Chem. Soc. 1999, 121, 1752–1753. [Google Scholar]
- Bielejewska, A.G.; Marjo, C.E.; Prins, L.J.; Timmerman, P.; De Jong, F.; Reinhoudt, D.N. Thermodynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine-cyanurate assemblies: A model description. J. Am. Chem. Soc. 2001, 123, 7518–7533. [Google Scholar] [CrossRef]
- Stine, C.B.; Reimschuessel, R.; Keltner, Z.; Nochetto, C.B.; Black, T.; Olejnik, N.; Scott, M.; Bandele, O.; Nemser, S.M.; Tkachenko, A.; et al. Reproductive toxicity in rats with crystal nephropathy following high doses of oral melamine or cyanuric acid. Food Chem. Toxicol. 2014, 68, 142–153. [Google Scholar] [CrossRef]
- Dorne, J.L.; Doerge, D.R.; Vandenbroeck, M.; Fink-Gremmels, J.; Mennes, W.; Knutsen, H.K.; Vernazza, F.; Castle, L.; Edler, L.; Benford, D. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicol. Appl. Pharmacol. 2013, 270, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.C.; Tseng, Y.T.; Wu, S.R.; Wu, M.T.; Lo, Y.C. Melamine activates NFκB/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells. Toxicol. In Vitro 2013, 27, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Filazi, A.; Sireli, U.T.; Ekici, H.; Can, H.Y.; Karagoz, A. Determination of melamine in milk and dairy products by high performance liquid chromatography. J. Dairy Sci. 2012, 95, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhong, Y.; Liu, J.; Zhang, H.; Xi, J.; Wang, J. An enzyme linked immunosorbent assay for the determination of cyromazine and melamine residues in animal muscle tissues. Food Control 2010, 21, 1482–1487. [Google Scholar] [CrossRef]
- Marinas, M.; Sa, E.; Rojas, M.M.; Moalem, M.; Urbano, F.J.; Guillou, C.; Rallo, L. A nuclear magnetic resonance (1H and 13C) and isotope ratio mass spectrometry (δ13C, δ2H and δ18O) study of Andalusian olive oils. Rapid Commun. Mass Spectrom. 2010, 24, 1457–1466. [Google Scholar]
- Tkachenko, A.; Clark, J.; Knutson, N.; Wallace, B.; Bomba, M.; Yacopucci, M.; Rhodes, B.; Nemser, S.M.; Guag, J.; Reimschuessel, R. Investigation of melamine and cyanuric acid deposition in pig tissues using LC-MS/MS methods. Food Chem. Toxicol. 2015, 80, 310–318. [Google Scholar] [CrossRef]
- Zheng, X.L.; Yu, B.S.; Li, K.X.; Dai, Y.N. Determination of melamine in dairy products by HILIC-UV with NH2 column. Food Control 2012, 23, 245–250. [Google Scholar] [CrossRef]
- Montesano, D.; Gennari, O.; Festa, C.; Zollo, F.; Seccia, S.; Albrizio, S. A simple HPLC-DAD method for the analysis of melamine in protein supplements: Validation using the accuracy profiles. J. Chem. 2013. [Google Scholar] [CrossRef]
- Rodionova, O.Y.; Pierna, J.A.F.; Baeten, V.; Pomerantsev, A.L. Chemometric non-targeted analysis for detection of soybean meal adulteration by near infrared spectroscopy. Food Control 2021, 119, 107459. [Google Scholar] [CrossRef]
- Nieuwoudt, M.K.; Holroyd, S.E.; McGoverin, C.M.; Simpson, M.C.; Williams, D.E. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. J. Dairy Sci. 2016, 99, 2520–2536. [Google Scholar] [CrossRef]
- Pérez-Marín, D.; Garrido-Varo, A.; Guerrero, J.E.; Gutiérrez-Estrada, J.C. Use of Artificial Neural Networks in Near-Infrared ReflectanceSpectroscopy Calibrations for Predicting the InclusionPercentages of Wheat and Sunflower Meal in CompoundFeedingstuffs. Appl. Spectrosc. 2006, 60, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Perez-Marin, D.; Garrido-Varo, A.; Guerrero, J.E.; Fearn, T.; Davies, A.M.C. Advanced Nonlinear Approaches for Predicting the IngredientComposition in Compound Feedingstuffs by Near-InfraredReflection Spectroscopy. Appl. Spectrosc. 2008, 62, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Marín, D.; Fearn, T.; Guerrero, J.E.; Garrido-Varo, A. Improving NIRS predictions of ingredient composition in compound feedingstuffs using Bayesian non-parametric calibrations. Chemom. Intell. Lab. Syst. 2012, 110, 108–111. [Google Scholar] [CrossRef]
- Lohumi, S.; Joshi, R.; Kandpal, L.M.; Lee, H.; Kim, M.S.; Cho, H.; Mo, C.; Seo, Y.W.; Rahman, A.; Cho, B.K. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Joshi, R.; Amanah, H.Z.; Faqeerzada, M.A.; Jayapal, P.K.; Kim, G.; Baek, I.; Park, E.S.; Masithoh, R.E.; Cho, B.K. Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis. Korean J. Agric. Sci. 2021, 48, 299–310. [Google Scholar]
- Joshi, R.; Sathasivam, R.; Park, S.U.; Lee, H.; Kim, M.S.; Baek, I.; Cho, B.K. Application of fourier transform infrared spectroscopy and multivariate analysis methods for the non-destructive evaluation of phenolics compounds in moringa powder. Agriculture 2022, 12, 10. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Khir, M.H.M.; Witjaksono, G.; Ghumman, A.S.M.; Junaid, M.; Magsi, S.A.; Saboor, A. Multivariate Analysis Coupled with M-SVM Classification for Lard Adulteration Detection in Meat Mixtures of Beef, Lamb, and Chicken Using FTIR Spectroscopy. Foods 2021, 10, 2405. [Google Scholar] [CrossRef]
- Foschi, N.; Tozzi, L.; Donato, F.D.; Biancolillo, A.; D’Archivio, A.A. A Novel FTIR-Based Chemometric Solution for the Assessment of Saffron Adulteration with Non-Fresh Stigmas. Sensors 2022, 28, 33. [Google Scholar] [CrossRef]
- Joshi, R.; Cho, B.K.; Lohumi, S.; Joshi, R.; Lee, J.; Lee, H.; Mo, C. Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR)spectroscopy. Korean J. Agric. Sci. 2018, 46, 257–271. [Google Scholar]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef]
- Pan, M.; Sun, S.; Zhou, Q.; Chen, J. A Simple and Portable Screening Method for Adulterated Olive Oils Using the Hand-Held FTIR Spectrometer and Chemometrics Tools. J. Food Sci. 2018, 83, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Chatzidakis, M.; Botton, G.A. Towards calibration-invariant spectroscopy using deep learning. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. In Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG): Kuala Lumpur, Malaysia, 2014; pp. 1–10. [Google Scholar]
- Zhang, D.; Zheng, Z.; Wang, T.; He, Y. HROM: Learning High-Resolution Representation and Object-Aware Masks for Visual Object Tracking. Sensors 2020, 20, 4807. [Google Scholar] [CrossRef]
- Wu, X.; Gao, S.; Niu, Y.; Zhao, Z.; Xu, B.; Ma, R.; Liu, H.; Zhang, Y. Identification of olive oil in vegetable blend oil by one-dimensional convolutional neural network combined with Raman spectroscopy. J. Food Compos. Anal. 2022, 108, 104396. [Google Scholar] [CrossRef]
- Li, M.; He, H.; Huang, G.; Lin, B.; Tian, H.; Xia, K.; Yuan, C.; Zhan, X.; Zhang, Y.; Fu, W. A Novel and Rapid Serum Detection Technology for Non-Invasive Screening of Gastric Cancer Based on Raman Spectroscopy Combined with Different Machine Learning Methods. Front. Oncol. 2021, 11, 665176. [Google Scholar] [CrossRef]
- Sun, J.; Hu, Y.; Zou, Y.; Geng, J.; Wu, Y.; Fan, R.; Kang, Z. Identification of pesticide residues on black tea by fluorescence hyperspectral technology combined with machine learning. Food Sci. Technol. 2022, 42, 1–9. [Google Scholar] [CrossRef]
- Bao, X.; Dai, L. Partial least squares with outlier detection in spectral analysis: A tool to predict gasoline properties. Fuel 2009, 88, 1216–1222. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, N.; Zhu, M.; Qiu, X.; Sun, S.; Liu, Y.; Zhao, T.; Yao, J.; Shan, G. Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol. Molecules 2022, 27, 1707. [Google Scholar] [CrossRef]
- Grobério, T.S.; Zacca, J.J.; Botelho, É.D.; Talhavini, M.; Braga, J.W.B. Discrimination and quantification of cocaine and adulterants in seized drug samples by infrared spectroscopy and PLSR. Forensic Sci. Int. 2015, 257, 297–306. [Google Scholar] [CrossRef]
- Shin, J.K.; Moon, S.H. Numerical Investigations in Choosing the Number of Principal Components in Principal Component Regression-CASE I. J. Korean Data Inf. Sci. Soc. 1997, 8, 127–134. [Google Scholar]
- Goicoechea, H.C.; Goicoechea, H.C.; Olivieri, A.C. Wavelength selection by net analyte signals calculated with multivariatefactor-based hybrid linear analysis (HLA). A theoretical and experimental comparison with partial least-squares (PLS). Analyst 1999, 124, 725–731. [Google Scholar] [CrossRef]
- Lorber, A. Error propagation and figures of merit for quantification by solving matrix equations. Anal. Chem. 1986, 58, 1167–1172. [Google Scholar] [CrossRef]
- Marsili, N.R.; Sobrero, M.S.; Goicoechea, H.C. Spectrophotometric determination of sorbic and benzoic acids in fruit juices by anet analyte signal-based method with selection of the wavelength range to avoid non-modelled interferences. Anal. Bioanal. Chem. 2003, 376, 126–133. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, S. Preparation and fire behavior of rigid polyurethane foams synthesized from modified urea–melamine–formaldehyde resins. RSC Adv. 2018, 8, 17879–17887. [Google Scholar] [CrossRef]
- Bakry, A.M.; Awad, F.S.; Bobb, J.A.; Ibrahim, A.A.; El-Shall, M.S. Melamine-based functionalized graphene oxide and zirconium phosphate for high performance removal of mercury and lead ions from water. RSC Adv. 2020, 10, 37883–37897. [Google Scholar] [CrossRef]
- Lozano, M.; Rodríguez-Ulibarri, P.; Echeverría, J.C.; Beruete, M.; Sorolla, M.; Beriain, M.J. Mid-Infrared Spectroscopy (MIR) for Simultaneous Determination of Fat and Protein Content in Meat of Several Animal Species. Food Anal. Methods 2017, 10, 3462–3470. [Google Scholar] [CrossRef]
- García-López, E.; Marci, G.; Serpone, N.; Hidaka, H. Photoassisted oxidation of the recalcitrant cyanuric acid substrate in aqueous ZnO suspensions. J. Phys. Chem. C 2007, 111, 18025–18032. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Chen, J.; Rahardja, S. Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1467–1471. [Google Scholar] [CrossRef]
- Fearn, T. The overuse of R2. Chemom. Space 2014, 25. [Google Scholar] [CrossRef]
- Byungchul, K.; Perkins, B.; Bushway, R.J.; Nesbit, S.; Fan, T.; Sheridan, R.; Greene, V. Determination of melamine in pet food by enzyme immunoassay, high-performance liquid chromatography with diode array detection, and ultra-performance liquid chromatography with tandem mass spectrometry. J. AOAC Int. 2008, 91, 408–413. [Google Scholar]
- Heller, D.N.; Nochetto, C.B. Simultaneous determination and confirmation of melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 3624–3632. [Google Scholar] [CrossRef] [PubMed]
Layer (Type) | Output Shape | Parameters | Activation Function |
---|---|---|---|
Conv1D_1 (Conv1D) dropout (Dropout) Conv1D_2 (Conv1D) Conv1D_3 (Conv1D) MaxPooling1D flatten Dense_1 Dense_2 Dense_3 Total params: 931,889 Trainable params: 931,889 Non-trainable params: 0 | (None, 1799, 64) (None, 1799, 64) (None, 1795, 32) (None, 1791, 16) (None, 895, 16) (None, 14320) (None, 64) (None, 32) (None, 1) | 384 0 10,272 2576 0 0 916,544 2080 33 | ReLU ReLU ReLU - - - ReLU ReLU - |
Region | Model/Preprocessing | R2cal | RMSEC (%) | R2pre | RMSEP (%) | LVs | Bias |
---|---|---|---|---|---|---|---|
FT-IR spectroscopy | PLSR/SNV | 0.989 | 0.143 | 0.989 | 0.145 | 7 | −0.003 |
PCR/SNV | 0.981 | 0.183 | 0.980 | 0.156 | 8 | 0.012 | |
HLA/GO/SNV | 0.978 | 0.210 | 0.981 | 0.187 | 8 | 0.025 |
Region | Model/Preprocessing | R2cal | RMSEC (%) | R2pre | RMSEP (%) | LVs | Bias |
---|---|---|---|---|---|---|---|
FT-IR spectroscopy | PLSR/SG-1 | 0.987 | 0.150 | 0.987 | 0.141 | 5 | 0.005 |
PCR/SNV | 0.955 | 0.287 | 0.956 | 0.223 | 8 | 0.018 | |
HLA/GO/MSC | 0.945 | 0.290 | 0.951 | 0.225 | 8 | 0.030 |
Regression Model | R2pre | RMSEP (%) | ||
---|---|---|---|---|
Melamine | Cyanuric Acid | Melamine | Cyanuric Acid | |
PLSR | 0.989 | 0.987 | 0.145 | 0.141 |
PCR | 0.980 | 0.956 | 0.156 | 0.223 |
HLA/GO | 0.981 | 0.951 | 0.187 | 0.225 |
1D CNN | 0.995 | 0.994 | 0.090 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, R.; GG, L.P.; Faqeerzada, M.A.; Bhattacharya, T.; Kim, M.S.; Baek, I.; Cho, B.-K. Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy. Sensors 2023, 23, 5020. https://doi.org/10.3390/s23115020
Joshi R, GG LP, Faqeerzada MA, Bhattacharya T, Kim MS, Baek I, Cho B-K. Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy. Sensors. 2023; 23(11):5020. https://doi.org/10.3390/s23115020
Chicago/Turabian StyleJoshi, Rahul, Lakshmi Priya GG, Mohammad Akbar Faqeerzada, Tanima Bhattacharya, Moon Sung Kim, Insuck Baek, and Byoung-Kwan Cho. 2023. "Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy" Sensors 23, no. 11: 5020. https://doi.org/10.3390/s23115020
APA StyleJoshi, R., GG, L. P., Faqeerzada, M. A., Bhattacharya, T., Kim, M. S., Baek, I., & Cho, B. -K. (2023). Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy. Sensors, 23(11), 5020. https://doi.org/10.3390/s23115020