Proximal Active Optical Sensing Operational Improvement for Research Using the CropCircle ACS-470, Implications for Measurement of Normalized Difference Vegetation Index (NDVI)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Sensor temperature influence on unfiltered detector signals
- Temperature influence on filtered detector signals
- Filter influence
- Influence of Environment in Field Conditions
- Sun and Wind
- 2.
- Insulation Mitigation
- Sensor signal response outdoors
- Warmup before field measurement
- 2.
- Reflectance and temperature
- 3.
- Pre and post field collection reference measurements
- 4.
- Detector changes during field measurements
4. Discussion
- Sensor thermal status measurement application
- Sensor insulation application
- Individual filtered detector characterization
- Sensor warmup before field collection
- Sensor unity white panel normalization
- Pre-field collection white panel measurement
- Post-field collection white panel measurement
- Possible data correction using pre/post unity offsets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Detector | Start | Stop | Change | Max | Min | Mean | Median | Count | Std Dev | Var |
---|---|---|---|---|---|---|---|---|---|---|
SN#335_590 | 1.056 | 0.968 | −8.77% | 1.076 | 0.959 | 0.993 | 0.989 | 77,097 | 0.0155 | 0.0004 |
SN#335_730 | 1.097 | 0.943 | −15.41% | 1.115 | 0.927 | 0.983 | 0.973 | 77,097 | 0.0268 | 0.0011 |
SN#335_530 | 1.092 | 0.950 | −14.23% | 1.122 | 0.934 | 0.984 | 0.976 | 77,097 | 0.0231 | 0.0008 |
SN#264_550 | 1.040 | 0.999 | −4.02% | 1.079 | 0.938 | 1.016 | 1.016 | 75,622 | 0.0101 | 0.0002 |
SN#264_800 | 0.990 | 1.004 | 1.38% | 1.064 | 0.958 | 1.011 | 1.011 | 75,622 | 0.0091 | 0.0001 |
SN#264_670 | 0.996 | 0.978 | −1.81% | 1.006 | 0.972 | 0.991 | 0.991 | 75,622 | 0.0049 | 0.0000 |
SN#303_590 | 1.002 | 1.003 | 0.16% | 1.018 | 0.982 | 1.000 | 1.000 | 77,269 | 0.0020 | 0.0000 |
SN#303_730 | 1.065 | 0.969 | −9.59% | 1.082 | 0.948 | 0.997 | 0.990 | 77,269 | 0.0195 | 0.0006 |
SN#303_530 | 1.028 | 0.985 | −4.25% | 1.042 | 0.969 | 0.996 | 0.995 | 77,269 | 0.0076 | 0.0001 |
SN#256_550 | 1.020 | 0.999 | −2.11% | 1.026 | 0.988 | 1.005 | 1.005 | 77,182 | 0.0041 | 0.0000 |
SN#256_800 | 0.997 | 1.009 | 1.25% | 1.051 | 0.973 | 1.012 | 1.012 | 77,182 | 0.0076 | 0.0001 |
SN#256_670 | 1.007 | 0.986 | −2.07% | 1.013 | 0.981 | 0.994 | 0.992 | 77,182 | 0.0049 | 0.0000 |
SN#267_590 | 0.983 | 1.011 | 2.88% | 1.019 | 0.973 | 1.007 | 1.009 | 76,700 | 0.0044 | 0.0000 |
SN#267_730 | 1.030 | 0.987 | −4.26% | 1.045 | 0.971 | 1.000 | 0.997 | 76,700 | 0.0102 | 0.0002 |
SN#267_530 | 1.041 | 1.012 | −2.83% | 1.053 | 0.996 | 1.019 | 1.017 | 76,700 | 0.0064 | 0.0001 |
SN#333_550 | 1.077 | 1.013 | −6.42% | 1.086 | 0.998 | 1.017 | 1.015 | 77,777 | 0.0067 | 0.0001 |
SN#333_800 | 1.009 | 1.019 | 1.02% | 1.056 | 0.956 | 1.011 | 1.013 | 77,777 | 0.0107 | 0.0002 |
SN#333_670 | 1.056 | 1.012 | −4.39% | 1.065 | 1.000 | 1.014 | 1.012 | 77,777 | 0.0054 | 0.0001 |
SN#301_590 | 1.007 | 1.003 | −0.34% | 1.024 | 0.992 | 1.004 | 1.003 | 76,929 | 0.0025 | 0.0000 |
SN#301_730 | 1.040 | 0.981 | −5.92% | 1.067 | 0.962 | 0.997 | 0.992 | 76,929 | 0.0135 | 0.0003 |
SN#301_530 | 1.032 | 1.000 | −3.25% | 1.049 | 0.980 | 1.006 | 1.004 | 76,929 | 0.0069 | 0.0001 |
SN#217_550 | 1.026 | 0.998 | −2.75% | 1.032 | 0.987 | 1.005 | 1.004 | 77,459 | 0.0055 | 0.0000 |
SN#217_800 | 0.995 | 1.017 | 2.19% | 1.054 | 0.972 | 1.013 | 1.013 | 77,459 | 0.0085 | 0.0001 |
SN#217_670 | 1.004 | 0.989 | −1.50% | 1.011 | 0.983 | 0.993 | 0.991 | 77,459 | 0.0044 | 0.0000 |
Detector | Start | Stop | Change | Max | Min | Mean | Median | Count | Std Dev | Var |
---|---|---|---|---|---|---|---|---|---|---|
SN#335_590 | 0.954 | 0.951 | −0.34% | 0.962 | 0.938 | 0.950 | 0.950 | 12,665 | 0.0026 | 0.0000 |
SN#335_730 | 0.933 | 0.931 | −0.17% | 0.949 | 0.910 | 0.929 | 0.929 | 12,665 | 0.0043 | 0.0000 |
SN#335_530 | 0.927 | 0.927 | −0.07% | 0.945 | 0.908 | 0.924 | 0.924 | 12,665 | 0.0037 | 0.0000 |
SN#264_550 | 0.956 | 0.959 | 0.36% | 0.982 | 0.925 | 0.954 | 0.954 | 12,572 | 0.0059 | 0.0001 |
SN#264_800 | 0.969 | 0.969 | −0.05% | 1.004 | 0.930 | 0.964 | 0.964 | 12,572 | 0.0080 | 0.0001 |
SN#264_670 | 0.950 | 0.952 | 0.22% | 0.957 | 0.938 | 0.947 | 0.947 | 12,572 | 0.0026 | 0.0000 |
SN#303_590 | 1.001 | 0.998 | −0.25% | 1.006 | 0.989 | 0.998 | 0.998 | 12,687 | 0.0017 | 0.0000 |
SN#303_730 | 0.957 | 0.953 | −0.31% | 0.976 | 0.933 | 0.952 | 0.952 | 12,687 | 0.0043 | 0.0000 |
SN#303_530 | 0.970 | 0.970 | −0.03% | 0.985 | 0.951 | 0.968 | 0.968 | 12,687 | 0.0035 | 0.0000 |
SN#256_550 | 0.986 | 0.983 | −0.27% | 0.995 | 0.937 | 0.983 | 0.983 | 12,667 | 0.0023 | 0.0000 |
SN#256_800 | 1.007 | 0.998 | −0.84% | 5.393 | 0.957 | 1.001 | 0.999 | 12,667 | 0.0102 | 0.0070 |
SN#256_670 | 0.976 | 0.973 | −0.38% | 2.130 | 0.965 | 0.973 | 0.972 | 12,667 | 0.0023 | 0.0004 |
SN#267_590 | 1.008 | 1.005 | −0.32% | 1.015 | 0.996 | 1.005 | 1.005 | 12,578 | 0.0019 | 0.0000 |
SN#267_730 | 0.981 | 0.975 | −0.58% | 0.996 | 0.957 | 0.976 | 0.976 | 12,578 | 0.0041 | 0.0000 |
SN#267_530 | 1.003 | 1.002 | −0.11% | 1.020 | 0.984 | 1.001 | 1.001 | 12,578 | 0.0035 | 0.0000 |
SN#333_550 | 1.022 | 1.020 | −0.18% | 1.245 | 0.730 | 1.019 | 1.019 | 12,782 | 0.0030 | 0.0001 |
SN#333_800 | 1.039 | 1.033 | −0.64% | 4.911 | 0.992 | 1.034 | 1.032 | 12,782 | 0.0109 | 0.0052 |
SN#333_670 | 1.026 | 1.021 | −0.45% | 2.417 | 0.939 | 1.022 | 1.021 | 12,782 | 0.0023 | 0.0004 |
SN#301_590 | 1.001 | 1.001 | −0.06% | 1.008 | 0.992 | 0.999 | 0.999 | 12,634 | 0.0017 | 0.0000 |
SN#301_730 | 0.979 | 0.982 | 0.36% | 0.998 | 0.958 | 0.979 | 0.979 | 12,634 | 0.0042 | 0.0000 |
SN#301_530 | 0.992 | 0.994 | 0.24% | 1.008 | 0.973 | 0.992 | 0.992 | 12,634 | 0.0034 | 0.0000 |
SN#217_550 | 0.983 | 0.989 | 0.57% | 1.001 | 0.971 | 0.984 | 0.984 | 12,714 | 0.0029 | 0.0000 |
SN#217_800 | 1.014 | 1.015 | 0.19% | 1.051 | 0.972 | 1.011 | 1.011 | 12,714 | 0.0079 | 0.0001 |
SN#217_670 | 0.980 | 0.984 | 0.43% | 0.990 | 0.973 | 0.980 | 0.980 | 12,714 | 0.0019 | 0.0000 |
References
- Milton, E.J. Review article principles of field spectroscopy. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Williams, D.L.; Goward, S.; Arvidson, T. Landsat. Photogramm. Eng. Remote Sens. 2006, 72, 1171–1178. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; Volume 351, pp. 309–317. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Pinter, P.J. Solar angle independence in the relationship between absorbed PAR and remotely sensed data for alfalfa. Remote Sens. Environ. 1993, 46, 19–25. [Google Scholar] [CrossRef]
- Perry, E.M.; Fitzgerald, G.J.; Poole, N.; Craig, S.; Whitlock, A. NDVI from active optical sensors as a measure of canopy cover and biomass. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 317–319. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Resour. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis, and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sens. Environ. 1987, 21, 143–183. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.; Yang, L. A Preliminary Study on Mechanism of Lai Inversion Saturation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 77–81. [Google Scholar] [CrossRef]
- Reyniers, M.; Vrindts, E. Measuring wheat nitrogen status from space and ground-based platform. Int. J. Remote Sens. 2006, 27, 549–567. [Google Scholar] [CrossRef]
- Wang, R.; Cherkauer, K.; Bowling, L. Corn response to climate stress detected with satellite-based NDVI time series. Remote Sens. 2016, 8, 269. [Google Scholar] [CrossRef]
- Chávez, R.O.; Clevers, J.G.; Verbesselt, J.; Naulin, P.I.; Herold, M. Detecting leaf pulvinar movements on NDVI time series of desert trees: A new approach for water stress detection. PLoS ONE 2014, 9, e106613. [Google Scholar] [CrossRef] [PubMed]
- Brinkhoff, J.; Schultz, A.; Suarez, L.A.; Robson, A.J. Olive Tree Water Stress Detection Using Daily Multispectral Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Dong, X.; Peng, B.; Sieckenius, S.; Raman, R.; Conley, M.M.; Leskovar, D.I. Leaf water potential of field crops estimated using NDVI in ground-based remote sensing—Opportunities to increase prediction precision. PeerJ 2021, 9, e12005. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, S.; Marín, J.; Parra, L.; Lloret, J.; Mauri, P.V. Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regime. Agric. Water Manag. 2022, 266, 107581. [Google Scholar] [CrossRef]
- Haiyu, T.; Shan, X.; Yongchao, T.; Zhaofeng, L.; Yan, G.; Jiaoping, Z.; Yu, W.; Guodong, Z.; Xiong, D.; Ze, Z.; et al. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun. 2022, 3, 2590–3462. [Google Scholar] [CrossRef]
- Galvão, L.S.; Ponzoni, F.J.; Epiphanio, J.C.N.; Rudorff, B.F.T.; Formaggio, A.R. Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data. Int. J. Remote Sens. 2004, 25, 1861–1879. [Google Scholar] [CrossRef]
- Jones, J.R.; Fleming, C.S.; Pavuluri, K.; Alley, M.M.; Reiter, M.S.; Thomason, W.E. Influence of soil, crop residue, and sensor orientations on NDVI readings. Precis. Agric. 2015, 16, 690–704. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamb, D.W. Trigonometric correction factors renders the fAPAR–NDVI relationship from active optical reflectance sensors insensitive to solar elevation angle. Comput. Electron. Agric. 2016, 121, 43–47. [Google Scholar] [CrossRef]
- Friedl, M.A.; Davis, F.W.; Michaelsen, J.; Moritz, M.A. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE. Remote Sens. Environ. 1995, 54, 233–246. [Google Scholar] [CrossRef]
- Bokhorst, S.; Tømmervik, H.; Callaghan, T.V.; Phoenix, G.K.; Bjerke, J.W. Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. Environ. Exp. Bot. 2012, 81, 18–25. [Google Scholar] [CrossRef]
- Meyer, D.; Verstraete, M.; Pinty, B. The effect of surface anisotropy and viewing geometry on the estimation of NDVI from AVHRR. Remote Sens. Rev. 1995, 12, 3–27. [Google Scholar] [CrossRef]
- Finley, A.O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol. Evol. 2011, 2, 143–154. [Google Scholar] [CrossRef]
- Schläpfer, D.; Richter, R.; Feingersh, T. Operational BRDF Effects Correction for Wide-Field-of-View Optical Scanners (BREFCOR). IEEE Trans. Geosci. Remote Sens. 2015, 53, 1855–1864. [Google Scholar] [CrossRef]
- Barmeier, G.; Schmidhalter, U. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing. Sensors 2016, 16, 1860. [Google Scholar] [CrossRef]
- Pacheco-Labrador, J.; Martín, P.M.; Riaño, D.; Hilker, T.; Carrara, A. New approaches in multi-angular proximal sensing of vegetation: Accounting for spatial heterogeneity and diffuse radiation in directional reflectance distribution models. Remote Sens. Environ. 2016, 187, 447–457. [Google Scholar] [CrossRef]
- Yang, X.; Zuo, X.; Xie, W.; Li, Y.; Guo, S.; Zhang, H. A Correction Method of NDVI Topographic Shadow Effect for Rugged Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8456–8472. [Google Scholar] [CrossRef]
- Baghzouz, M.; Devitt, D.A.; Fenstermaker, L.F.; Young, M.H. Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sens. 2010, 2, 990–1013. [Google Scholar] [CrossRef]
- Garrity, S.R.; Lee, A.V.; Bickford, K. A simple filtered photodiode instrument for continuous measurement of narrowband NDVI and PRI over vegetated canopies. Agric. For. Meteorol. 2010, 150, 489–496. [Google Scholar] [CrossRef]
- Fensholt, R.; Inge, S.; Simon, S. Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1774–1786. [Google Scholar] [CrossRef]
- Zubkova, K.I.; Kurevleva, T.G.; Permitina, L.I. The Estimation of the NDVI Calculation Error when Using Empirical Methods for Atmospheric Correction. Rocket Space Instrum. Inf. Syst. 2016, 3, 24–30. [Google Scholar]
- Moravec, D.; Komárek, J.; López-Cuervo, M.S.; Molina, I. Effect of atmospheric corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV sensors. Remote Sens. 2021, 13, 3550. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Goel, N.S. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev. 1988, 4, 1–212. [Google Scholar] [CrossRef]
- Holland, K.H.; Lamb, D.W.; Schepers, J.S. Radiometry of Proximal Active Optical Sensors (AOS) for Agricultural Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1793–1802. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yuan, F.; Cheng, S.; Cui, Z. Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy 2018, 8, 201. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precis. Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Pauli, D.; White, J.W.; Andrade-Sanchez, P.; Conley, M.M.; Heun, J.; Thorp, K.R.; French, A.N.; Hunsaker, D.J.; Carmo-Silva, E.; Wang, G.; et al. Investigation of the Influence of Leaf Thickness on Canopy Reflectance and Physiological Traits in Upland and Pima Cotton Populations. Front. Plant Sci. 2017, 8, 1405. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Wang, X.; Sun, X.; Ding, Y.; Cao, W.; Hu, Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods 2020, 16, 11. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.; King, W.; Dalley, D.; Dynes, R. The Use of Optical Sensors to Estimate Pasture Quality. Int. J. Smart Sens. Intell. Syst. 2011, 4, 125–137. [Google Scholar] [CrossRef]
- Cao, Q.; Yuxin, M.; Hongye, W.; Shanyu, H.; Shanshan, C.; Khosla, R.; Rongfeng, J. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Ward, N.C. Nitrogen and Water Effects on Canopy Sensor Measurements for Site-Specific Management of Crops; University of Nebraska-Lincoln: Lincoln, NE, USA, 2015; Available online: https://digitalcommons.unl.edu/agronhortdiss/91/ (accessed on 10 August 2015).
- Bronson, K.F.; White, J.W.; Conley, M.M.; Hunsaker, D.J.; Thorp, K.R.; French, A.N.; Mackey, B.E.; Holland, K.H. Active Optical Sensors in Irrigated Durum Wheat: Nitrogen and Water Effects. Agron. J. 2017, 109, 1060–1071. [Google Scholar] [CrossRef]
- Padilla, F.M.; Thompson, R.B.; Peña-Fleitas, M.T.; Gallardo, M. Reference values for phenological phases of chlorophyll meter readings and reflectance indices for optimal N nutrition of fertigated tomato. Acta Hortic. 2018, 1192, 65–72. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Shaver, T.M.; Kruger, G.R.; Rudnick, D.R. Crop canopy sensor orientation for late season nitrogen determination in corn. J. Plant Nutr. 2017, 40, 2217–2223. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Li, F.; Gao, X.; Liu, B.; Lu, D.; Chen, X. Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precis. Agric. 2017, 18, 2–18. [Google Scholar] [CrossRef]
- Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Grasso, R.; Gallardo, M.; Thompson, R.B. Influence of time of day on measurement with chlorophyll meters and canopy reflectance sensors of different crop N status. Precis. Agric. 2019, 20, 1087–1106. [Google Scholar] [CrossRef]
- Lee, Y.J.; Chang, K.W.; Shen, Y.; Huang, T.M.; Tsay, H.L. A handy imaging system for precision agriculture studies. Int. J. Remote Sens. 2007, 28, 4867–4876. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yang, C.M.; Chang, K.W.; Shen, Y. A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy. Agron. J. 2008, 100, 205–212. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J.; Sagardoy, R.; Morales, F.; Fereres, E. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens. Environ. 2010, 114, 286–298. [Google Scholar] [CrossRef]
- Kipp, S.; Mistele, B.; Schmidhalter, U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Comput. Electron. Agric. 2014, 100, 24–33. [Google Scholar] [CrossRef]
- Starks, P.J.; Walter-Shea, E.A.; Schiebe, F.R.; Markham, B.L. Temperature sensitivity characterization of a silicon diode array spectrometer. Remote Sens. Environ. 1995, 51, 385–389. [Google Scholar] [CrossRef]
- Qiu, J.; Li, Y.; Jia, Y. Characterization and Simulation, Persistent Phosphors; Woodhead Publishing: Swaston, UK, 2021; Volume 4, pp. 93–125. [Google Scholar] [CrossRef]
- Forney, L.J.; Meeks, E.L.; Ma, J.; Fralick, G.C. Measurement of frequency response in short thermocouple wires. Rev. Sci. Instrum. 1993, 64, 1280–1286. [Google Scholar] [CrossRef]
- Kee, Y.Y.; Asako, Y.; Ken, T.L.; Sidik, N.A.C. Uncertainty of Temperature measured by Thermocouple. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 68, 54–62. [Google Scholar]
- Sanderson, S.R.; Sturtevant, B. Transient heat flux measurement using a surface junction thermocouple. Rev. Sci. Instrum. 2002, 73, 2781–2787. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Ishigami, Y.; Goto, E.; Kozai, T. A Method for measuring Greenhouse Cover Temperature using a Thermocouple. Biosyst. Eng. 2006, 95, 99–109. [Google Scholar] [CrossRef]
- Nugraha, H.; Prajitno, P.; Achmadi, A.; Tistomo, A.S.; Wismogroho, A.S.; Imaduddin, A.; Yudanto, S.D.; Herbirowo, S.; Hendrik, R.R. Development of Inhomogeneity Measurement System for Type T Thermocouple with Local Heating Method. J. Phys. Conf. Ser. 2021, 1825, 012031. [Google Scholar] [CrossRef]
- Gudla, V.C.; Canulescu, S.J.; Villads, E.; Schou, J.; Ambat, R. Reflectance spectroscopy from TiO2 particles embedded in polyurethane. In Proceedings of the EUROCORR 2013—European Corrosion Congress, Estoril, Portugal, 1–5 September 2013; Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/58334668/Reflectance_spectroscopy.pdf (accessed on 16 September 2013).
- Zhou, A.; Yu, Z.; Chow, C.L.; Lau, D. Enhanced solar spectral reflectance of thermal coatings through inorganic additives. Energy Build. 2017, 138, 641–647. [Google Scholar] [CrossRef]
- Lu, H.; Huang, M.; Shen, K.S.; Zhang, J.; Xia, S.; Dong, C.; Xiong, Z.; Zhu, T.; Wu, D.; Zhang, B.; et al. Enhanced Diffuse Reflectance and Microstructure Properties of Hybrid Titanium Dioxide Nanocomposite Coating. Nanoscale Res. Lett. 2018, 13, 328. [Google Scholar] [CrossRef]
- Thompson, A.L.; Thorp, K.R.; Conley, M.M.; Roybal, M.; Moller, D.; Long, J.C. A data workflow to support plant breeding decisions from a terrestrial field-based high-throughput plant phenotyping system. Plant Methods 2020, 16, 97. [Google Scholar] [CrossRef]
- Thompson, A.L.; Conley, M.M.; Roybal, M. High-Throughput Phenotyping Data from a Proximal Sensing Cart; Agricultural Data Commons; USDA: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Brown, P.; Kopec, D.; Mancino, C. Estimating Turfgrass Water Use with AZMET; College of Agriculture, University of Arizona: Tucson, AZ, USA, 1988; Available online: https://repository.arizona.edu/handle/10150/215851 (accessed on 1 November 2022).
- Bronson, K.F.; Conley, M.M.; French, A.N.; Hunsaker, D.J.; Thorp, K.R.; Barnes, E.M. Which active optical sensor vegetation index is best for nitrogen assessment in irrigated cotton? Agron. J. 2020, 112, 2205–2218. [Google Scholar] [CrossRef]
- Bronson, K.F.; Hunsaker, D.J.; Mon, J.; Andrade-Sanchez, P.; White, J.W.; Conley, M.M.; Thorp, K.R.; Bautista, E.; Barnes, E.M. Improving Nitrogen Fertilizer Use Efficiency in Surface and Overhead Sprinkler-Irrigated Cotton in the Desert Southwest. Soil Sci. Soc. Am. J. 2017, 81, 1401–1412. [Google Scholar] [CrossRef]
- Bronson, K.; Conley, M.M. The Bronson Files, Dataset 8, Field 113, 2016; Agricultural Data Commons; USDA: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Bronson, K.; Conley, M.M. The Bronson Files, Dataset 9, Field 113, 2017 Cotton; Agricultural Data Commons; USDA: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Bronson, K.; Conley, M.M. The Bronson Files, Dataset 10, Field 113, 2018 Cotton; Agricultural Data Commons; USDA: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Rundquist, D.; Gitelson, A.; Leavitt, B.; Zygielbaum, A.; Perk, R.; Keydan, G. Elements of an integrated phenotyping system for monitoring crop status at canopy level. Agronomy 2014, 4, 108–123. [Google Scholar] [CrossRef]
- Thompson, A.L.; Conley, M.M.; Herritt, M.T.; Thorp, K.R. Response of upland cotton (Gossypium hirsutum L.) leaf chlorophyll content to high heat and low-soil water in the Arizona low desert. Photosynthetica 2022, 60, 280–292. [Google Scholar] [CrossRef]
- DiSalvo, F.J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef]
- Simons, R.E.; Chu, R.C. Application of thermoelectric cooling to electronic equipment: A review and analysis. In Proceedings of the Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 23 March 2000; Cat. No.00CH37068. pp. 1–9. [Google Scholar] [CrossRef]
- Enescu, D.; Virjoghe, E.O. A review on thermoelectric cooling parameters and performance. Renew. Sustain. Energy Rev. 2014, 38, 903–916. [Google Scholar] [CrossRef]
- Mao, J.; Chen, G.; Ren, Z. Thermoelectric cooling materials. Nat. Mater. 2021, 20, 454–461. [Google Scholar] [CrossRef]
- Conley, M.M. Professor PSC, Peltier TEC Camera Application 2019, a Performance Look-Back Note. Available online: https://doi.org/10.13140/RG.2.2.10892.46727 (accessed on 1 November 2022).
- Thompson, A.L.; Thorp, K.R.; Conley, M.M.; Pauli, D. A proximal sensing cart and custom cooling box for improved hyperspectral sensing in a desert environment. Front. Agron. 2023. submitted. [Google Scholar]
Detector | Median | Maximum | Minimum | Standard Deviation | |
---|---|---|---|---|---|
Unfiltered Signal | R1 | 0.98880 | 0.98890 | 0.98870 | 0.00005 |
R2 | 0.98890 | 0.98900 | 0.98880 | 0.00005 | |
R3 | 0.98900 | 0.98910 | 0.98890 | 0.00005 | |
670 no normalization | R1 | 0.04920 | 0.04940 | 0.04900 | 0.00011 |
R2 | 0.04010 | 0.04040 | 0.03990 | 0.00009 | |
R3 | 0.04630 | 0.04670 | 0.04610 | 0.00011 | |
670 normalized | R1 | 1.01265 | 1.01770 | 1.00610 | 0.00234 |
R2 | 1.01090 | 1.01990 | 1.00320 | 0.00294 | |
R3 | 1.00405 | 1.01020 | 0.99880 | 0.00219 | |
800 normalized | R1 | 1.17520 | 1.28110 | 1.06910 | 0.04018 |
R2 | 1.05495 | 1.12790 | 1.00670 | 0.02218 | |
R3 | 1.02105 | 1.10920 | 0.92940 | 0.03860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conley, M.M.; Thompson, A.L.; Hejl, R. Proximal Active Optical Sensing Operational Improvement for Research Using the CropCircle ACS-470, Implications for Measurement of Normalized Difference Vegetation Index (NDVI). Sensors 2023, 23, 5044. https://doi.org/10.3390/s23115044
Conley MM, Thompson AL, Hejl R. Proximal Active Optical Sensing Operational Improvement for Research Using the CropCircle ACS-470, Implications for Measurement of Normalized Difference Vegetation Index (NDVI). Sensors. 2023; 23(11):5044. https://doi.org/10.3390/s23115044
Chicago/Turabian StyleConley, Matthew M., Alison L. Thompson, and Reagan Hejl. 2023. "Proximal Active Optical Sensing Operational Improvement for Research Using the CropCircle ACS-470, Implications for Measurement of Normalized Difference Vegetation Index (NDVI)" Sensors 23, no. 11: 5044. https://doi.org/10.3390/s23115044
APA StyleConley, M. M., Thompson, A. L., & Hejl, R. (2023). Proximal Active Optical Sensing Operational Improvement for Research Using the CropCircle ACS-470, Implications for Measurement of Normalized Difference Vegetation Index (NDVI). Sensors, 23(11), 5044. https://doi.org/10.3390/s23115044